Featured Research

from universities, journals, and other organizations

X-rays film inside live flying insects -- in 3-D

Date:
March 25, 2014
Source:
PLOS
Summary:
Scientists have used a particle accelerator to obtain high-speed 3-D x-ray visualizations of flight muscles in flies. The team developed a CT scanning technique to allow them to film inside live flying insects.

The insect thorax reconstructed from tomograms.
Credit: 2014 Walker et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Scientists have used a particle accelerator to obtain high-speed 3D X-ray visualizations of the flight muscles of flies. The team from Oxford University, Imperial College, and the Paul Scherrer Institute (PSI) developed a groundbreaking new CT scanning technique at the PSI's Swiss Light Source to allow them to film inside live flying insects. Their article, including 3D movies of the blowfly flight motorpublished March 25 in the open access journal PLOS Biology. The movies offer a glimpse into the inner workings of one of nature's most complex mechanisms, showing that structural deformations are the key to understanding how a fly controls its wingbeat.

In the time that it takes a human to blink, a blowfly can beat its wings 50 times, controlling each wingbeat using numerous tiny steering muscles -- some as thin as a human hair. The membranous wings contain no muscles, so all of the flight muscles are hidden out of sight within the thorax. "The thoracic tissues block visible light, but can be penetrated by X-rays," says Dr. Rajmund Mokso from PSI. "By spinning the flies around in the dedicated fast-imaging experimental setup at the Swiss Light Source, we recorded radiographs at such a high speed that the flight muscles could be viewed from multiple angles at all phases of the wingbeat. We combined these images into 3D visualizations of the flight muscles as they oscillated back and forth 150 times per second."

The flies responded to being spun around by trying to turn in the opposite direction, allowing the scientists to record the asymmetric muscle movements associated with turning flight. "The steering muscles make up less than 3% of a fly's total flight muscle mass," says Prof. Graham Taylor who led the study in Oxford, "so a key question has been how the steering muscles can modulate the output of the much larger power muscles. The power muscles operate symmetrically, but by shifting each wing's mechanism between different modes of oscillation, the fly can divert power into a steering muscle specialized to absorb mechanical energy -- rather like using the gears of a car for braking."

The scientists hope to use their results to inform the design of new micromechanical devices. "Flies have solved a problem faced by engineers working on the same scale" says Prof. Taylor: "How to produce large, complex, three-dimensional motions, using actuators that only generate small, simple, one-dimensional ones?" The clever design of the blowfly flight motor solves that problem admirably, as the results of this study show. Dr. Simon Walker from Oxford, who was joint first author of the study with Daniel Schwyn, adds: "The fly's wing hinge is probably the most complex joint in nature, and is the product of more than 300 million years of evolutionary refinement. The result is a mechanism that differs dramatically from conventional humanmade designs; built to bend and flex rather than to run like clockwork."

Movie 1: http://youtu.be/P6lBkK3J9wg

Movie 2: http://youtu.be/ehG4G-NOTQg

Movie 3: http://youtu.be/mVL6cWbOZRQ


Story Source:

The above story is based on materials provided by PLOS. Note: Materials may be edited for content and length.


Journal Reference:

  1. Simon M. Walker, Daniel A. Schwyn, Rajmund Mokso, Martina Wicklein, Tonya Mόller, Michael Doube, Marco Stampanoni, Holger G. Krapp, Graham K. Taylor. In Vivo Time-Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor. PLoS Biology, 2014; 12 (3): e1001823 DOI: 10.1371/journal.pbio.1001823

Cite This Page:

PLOS. "X-rays film inside live flying insects -- in 3-D." ScienceDaily. ScienceDaily, 25 March 2014. <www.sciencedaily.com/releases/2014/03/140325190819.htm>.
PLOS. (2014, March 25). X-rays film inside live flying insects -- in 3-D. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2014/03/140325190819.htm
PLOS. "X-rays film inside live flying insects -- in 3-D." ScienceDaily. www.sciencedaily.com/releases/2014/03/140325190819.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) — Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) — More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) — CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) — Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins