Featured Research

from universities, journals, and other organizations

X-rays film inside live flying insects -- in 3-D

Date:
March 25, 2014
Source:
PLOS
Summary:
Scientists have used a particle accelerator to obtain high-speed 3-D x-ray visualizations of flight muscles in flies. The team developed a CT scanning technique to allow them to film inside live flying insects.

The insect thorax reconstructed from tomograms.
Credit: 2014 Walker et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Scientists have used a particle accelerator to obtain high-speed 3D X-ray visualizations of the flight muscles of flies. The team from Oxford University, Imperial College, and the Paul Scherrer Institute (PSI) developed a groundbreaking new CT scanning technique at the PSI's Swiss Light Source to allow them to film inside live flying insects. Their article, including 3D movies of the blowfly flight motorpublished March 25 in the open access journal PLOS Biology. The movies offer a glimpse into the inner workings of one of nature's most complex mechanisms, showing that structural deformations are the key to understanding how a fly controls its wingbeat.

In the time that it takes a human to blink, a blowfly can beat its wings 50 times, controlling each wingbeat using numerous tiny steering muscles -- some as thin as a human hair. The membranous wings contain no muscles, so all of the flight muscles are hidden out of sight within the thorax. "The thoracic tissues block visible light, but can be penetrated by X-rays," says Dr. Rajmund Mokso from PSI. "By spinning the flies around in the dedicated fast-imaging experimental setup at the Swiss Light Source, we recorded radiographs at such a high speed that the flight muscles could be viewed from multiple angles at all phases of the wingbeat. We combined these images into 3D visualizations of the flight muscles as they oscillated back and forth 150 times per second."

The flies responded to being spun around by trying to turn in the opposite direction, allowing the scientists to record the asymmetric muscle movements associated with turning flight. "The steering muscles make up less than 3% of a fly's total flight muscle mass," says Prof. Graham Taylor who led the study in Oxford, "so a key question has been how the steering muscles can modulate the output of the much larger power muscles. The power muscles operate symmetrically, but by shifting each wing's mechanism between different modes of oscillation, the fly can divert power into a steering muscle specialized to absorb mechanical energy -- rather like using the gears of a car for braking."

The scientists hope to use their results to inform the design of new micromechanical devices. "Flies have solved a problem faced by engineers working on the same scale" says Prof. Taylor: "How to produce large, complex, three-dimensional motions, using actuators that only generate small, simple, one-dimensional ones?" The clever design of the blowfly flight motor solves that problem admirably, as the results of this study show. Dr. Simon Walker from Oxford, who was joint first author of the study with Daniel Schwyn, adds: "The fly's wing hinge is probably the most complex joint in nature, and is the product of more than 300 million years of evolutionary refinement. The result is a mechanism that differs dramatically from conventional humanmade designs; built to bend and flex rather than to run like clockwork."

Movie 1: http://youtu.be/P6lBkK3J9wg

Movie 2: http://youtu.be/ehG4G-NOTQg

Movie 3: http://youtu.be/mVL6cWbOZRQ


Story Source:

The above story is based on materials provided by PLOS. Note: Materials may be edited for content and length.


Journal Reference:

  1. Simon M. Walker, Daniel A. Schwyn, Rajmund Mokso, Martina Wicklein, Tonya Mόller, Michael Doube, Marco Stampanoni, Holger G. Krapp, Graham K. Taylor. In Vivo Time-Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor. PLoS Biology, 2014; 12 (3): e1001823 DOI: 10.1371/journal.pbio.1001823

Cite This Page:

PLOS. "X-rays film inside live flying insects -- in 3-D." ScienceDaily. ScienceDaily, 25 March 2014. <www.sciencedaily.com/releases/2014/03/140325190819.htm>.
PLOS. (2014, March 25). X-rays film inside live flying insects -- in 3-D. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2014/03/140325190819.htm
PLOS. "X-rays film inside live flying insects -- in 3-D." ScienceDaily. www.sciencedaily.com/releases/2014/03/140325190819.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) — China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins