Featured Research

from universities, journals, and other organizations

Rainbow-catching waveguide could revolutionize energy technologies

Date:
March 28, 2014
Source:
University at Buffalo
Summary:
By slowing and absorbing certain wavelengths of light, engineers open new possibilities in solar power, thermal energy recycling and stealth technology More efficient photovoltaic cells. Improved radar and stealth technology. A new way to recycle waste heat generated by machines into energy. All may be possible due to breakthrough photonics research.

The image shows a “multilayered waveguide taper array.” The different wavelengths, or colors, are absorbed by the waveguide tapers (thimble-shaped structures) that together form an array.
Credit: Image courtesy of University at Buffalo

By slowing and absorbing certain wavelengths of light, engineers open new possibilities in solar power, thermal energy recycling and stealth technology

More efficient photovoltaic cells. Improved radar and stealth technology. A new way to recycle waste heat generated by machines into energy.

All may be possible due to breakthrough photonics research at the University at Buffalo.

The work, published March 28 in the journal Scientific Reports, explores the use of a nanoscale microchip component called a "multilayered waveguide taper array" that improves the chip's ability to trap and absorb light.

Unlike current chips, the waveguide tapers (the thimble-shaped structures pictured above) slow and ultimately absorb each frequency of light at different places vertically to catch a "rainbow" of wavelengths, or broadband light.

"We previously predicted the multilayered waveguide tapers would more efficiently absorb light, and now we've proved it with these experiments," says lead researcher Qiaoqiang Gan, PhD, UB assistant professor of electrical engineering. "This advancement could prove invaluable for thin-film solar technology, as well as recycling waste thermal energy that is a byproduct of industry and everyday electronic devices such as smartphones and laptops."

Each multilayered waveguide taper is made of ultrathin layers of metal, semiconductors and/or insulators. The tapers absorb light in metal dielectric layer pairs, the so-called hyperbolic metamaterial. By adjusting the thickness of the layers and other geometric parameters, the tapers can be tuned to different frequencies including visible, near-infrared, mid-infrared, terahertz and microwaves.

The structure could lead to advancements in an array of fields.

For example, there is a relatively new field of advanced computing research called on-chip optical communication. In this field, there is a phenomenon known as crosstalk, in which an optical signal transmitted on one waveguide channel creates an undesired scattering or coupling effect on another waveguide channel. The multilayered waveguide taper structure array could potentially prevent this.

It could also improve thin-film photovoltaic cells, which are a promising because they are less expensive and more flexible that traditional solar cells. The drawback, however, is that they don't absorb as much light as traditional cells. Because the multilayered waveguide taper structure array can efficiently absorb the visible spectrum, as well as the infrared spectrum, it could potentially boost the amount of energy that thin-film solar cells generate.

The multilayered waveguide taper array could help recycle waste heat generated by power plants and other industrial processes, as well as electronic devices such as televisions, smartphones and laptop computers.

"It could be useful as an ultra compact thermal-absorption, collection and liberation device in the mid-infrared spectrum," says Dengxin Ji, a PhD student in Gan's lab and first author of the paper.

It could even be used as a stealth, or cloaking, material for airplanes, ships and other vehicles to avoid radar, sonar, infrared and other forms of detection. "The multilayered waveguide tapers can be scaled up to tune the absorption band to a lower frequency domain and absorb microwaves efficiently," says Haomin Song, another PhD student in Gan's lab and the paper's second author.

Additional authors of the paper include Haifeng Hu, Kai Liu, Xie Zeng and Nan Zhang, all PhD candidates in UB's Department of Electrical Engineering.

The National Science Foundation sponsored the research.

Gan is a member of UB's electrical engineering optics and photonics research group, which includes professors Alexander N. Cartwright (also UB vice president for research and economic development), Edward Furlani and Pao-Lo Liu; associate professor Natalia Litchinitser; and assistant professor Liang Feng.

The group carries out research in nanophotonics, biophotonics, hybrid inorganic/organic materials and devices, nonlinear and fiber optics, metamaterials, nanoplasmonics, optofluidics, microelectromechanical systems (MEMS), biomedical microelectromechanical systems (BioMEMs), biosensing and quantum information processing.


Story Source:

The above story is based on materials provided by University at Buffalo. The original article was written by Cory Nealon. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dengxin Ji, Haomin Song, Xie Zeng, Haifeng Hu, Kai Liu, Nan Zhang, Qiaoqiang Gan. Broadband absorption engineering of hyperbolic metafilm patterns. Scientific Reports, 2014; 4 DOI: 10.1038/srep04498

Cite This Page:

University at Buffalo. "Rainbow-catching waveguide could revolutionize energy technologies." ScienceDaily. ScienceDaily, 28 March 2014. <www.sciencedaily.com/releases/2014/03/140328121027.htm>.
University at Buffalo. (2014, March 28). Rainbow-catching waveguide could revolutionize energy technologies. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2014/03/140328121027.htm
University at Buffalo. "Rainbow-catching waveguide could revolutionize energy technologies." ScienceDaily. www.sciencedaily.com/releases/2014/03/140328121027.htm (accessed September 1, 2014).

Share This




More Matter & Energy News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins