Featured Research

from universities, journals, and other organizations

Understanding the physics of turbulent flows inside turbines

Date:
April 2, 2014
Source:
University of Southampton
Summary:
Researchers are aiming to shed new light into the physics of turbulent flows inside the turbines of aero-engines. The aerodynamics of the turbine blades affects the efficiency of the engine, while the heat transfer from the extremely hot gas to the turbine blades is harmful to the life-span of the turbine. To determine the effects of turbulence and flow unsteadiness on the aerodynamics and the heat transfer from the gas to the metal blade, it is necessary to understand all the temporal and spatial scales in the flow.

Turbulent flow through a linear low-pressure turbine cascade at real engine conditions.
Credit: Image courtesy of University of Southampton

Researchers from the University of Southampton are aiming to shed new light into the physics of turbulent flows inside the turbines of aero-engines.

The aerodynamics of the turbine blades affects the efficiency of the engine, while the heat transfer from the extremely hot gas to the turbine blades is harmful to the life-span of the turbine.

To determine the effects of turbulence and flow unsteadiness on the aerodynamics and the heat transfer from the gas to the metal blade, it is necessary to understand all the temporal and spatial scales in the flow.

However, experimental measurements have, to date, not been able to provide data with enough depth to identify all the fundamental mechanisms and to explain weaknesses of currently used design tools, due to the difficulties of performing engine-scale experiments and acquiring spatially and temporally resolved data.

The Southampton research team, led by Richard Sandberg, Professor of Fluid Dynamics and Aeroacoustics, and including Dr Andrew Wheeler and Professor Neil Sandham, has identified that Direct Numerical Simulations (DNS), a model-free approach based on first principles (no assumptions or modelling are used) can help to develop an improved understanding of the role of turbulent phenomena in the flow-field and determine the validity of current turbulence modelling.

To further this research, the team has been awarded 35 million hours of computing time on a supercomputer in Stuttgart, Germany, through a grant from the Partnership of Advanced Computing in Europe (PRACE). The team has also received a grant in the US for another 10 million CPU hours on the world's second fastest supercomputer (Titan) at Oak Ridge National Laboratory. The combined allocation, corresponding to more than 5,000 years of computing on a single processor, will be used to perform simulations of flow through turbines of aero-engines.

Professor Sandberg says: "For this project, we will use software which has been developed at Southampton and is proven to be highly efficient for large parallelised computations. The results will provide a valuable benchmark that can be used to validate and improve current and future modelling of turbulence. The accuracy of such turbulence models is crucial to the development of high performance aero-engines."

The project is in close collaboration with world-leading aircraft engine provider GE, who are providing technical support and will play an integral part in the analysis of the data. GE will be able to implement the results of this work throughout their international aero-engine business and therefore this work, besides resulting in scientific publications in leading journals, also has the potential to deliver a significant change to global aviation.


Story Source:

The above story is based on materials provided by University of Southampton. Note: Materials may be edited for content and length.


Cite This Page:

University of Southampton. "Understanding the physics of turbulent flows inside turbines." ScienceDaily. ScienceDaily, 2 April 2014. <www.sciencedaily.com/releases/2014/04/140402095242.htm>.
University of Southampton. (2014, April 2). Understanding the physics of turbulent flows inside turbines. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2014/04/140402095242.htm
University of Southampton. "Understanding the physics of turbulent flows inside turbines." ScienceDaily. www.sciencedaily.com/releases/2014/04/140402095242.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com
$50bn Yukos Case Latest Russia Cost

$50bn Yukos Case Latest Russia Cost

Reuters - Business Video Online (July 28, 2014) A Hague court has ordered Russia to pay $50 billion to a group of shareholders in defunct oil giant Yukos for expropriating its assets. Russian Foreign Minister Lavrov says Moscow will most likely appeal. As Joel Flynn reports, the ruling hits Russia as it's facing more international sanctions about its role in Ukraine. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins