Featured Research

from universities, journals, and other organizations

Expanding particles to engineer defects: Adding larger particle to crystalline system can create order rather than distortions

Date:
April 8, 2014
Source:
Northwestern University
Summary:
Materials scientists have long known that introducing defects into three-dimensional materials can improve their mechanical and electronic properties. Now a new study finds how defects affect two-dimensional crystalline structures, and the results hold information for designing new materials.

Defects in the crystal destroy the order of six-fold rotational symmetry. The structure on the left displays particles arranged in a pentagonal lattice; the structure on the right is a heptagonal lattice.
Credit: Image courtesy of Northwestern University

Materials scientists have long known that introducing defects into three-dimensional materials can improve their mechanical and electronic properties. Now a new Northwestern study finds how defects affect two-dimensional crystalline structures, and the results hold information for designing new materials.

In packed, two-dimensional crystalline systems, such as in photonic two-dimensional crystals, the particles are organized in hexagonal lattices. One particle is in the center of the hexagon with six neighboring particles around it. A defective lattice is when the center particle has one extra or one fewer neighbor, creating a heptagon or pentagon. Two defects of similar types -- two pentagons or two heptagons -- will repel each other. Two defects of opposite types -- one pentagon and one heptagon -- will attract one another and proliferate.

"If there is one heptagon or one pentagon, then the structure is strongly distorted," says the paper's coauthor Monica Olvera de la Cruz, Lawyer Taylor Professor of Materials Science and Engineering. "But if you have one pentagon and one heptagon, then the distortion is relieved. The pairs cancel each other out."

Impure particles can cause defects in all types of systems. One impurity is a difference in particle size, which is naturally seen in granular materials, nanoparticles, and colloidal crystals. To see how a size disparity would affect the crystalline order and the system's physical properties, Olvera de la Cruz and postdoctoral fellow Zhenwei Yao devised a model system of soft particles, such as functionalized nanoparticles with grafted chains including nucleic acids or thiols. They made one of the particles in the lattice much larger than the surrounding particles.

"When we expanded one particle, all the neighboring particles were squeezed and stressed," says Yao, coauthor of the paper. "The bigger we made the particle, the more defects it caused."

The larger particle impurity induced defects. Surprisingly, however, instead of repelling one another and distorting the crystalline order, the defects settled into harmony.

"People would expect for them to repel," Olvera de la Cruz says. "But they all came together and arranged to generate a lower energy configuration. The defects around the impurity particles mediate the attractions between impurity particles."

The defects restored order, creating a "screen," or buffer, to protect the rest of the structure from the stress of the added impurity.

This finding could lead to new ways of engineering materials, supporting the Materials Genome Initiative. Creating materials with new properties by adding impurities can be tricky. If the impurities cause defects that induce attractions between impurity particles, then they might create regions where impurities aggregate. "That generates an interface of two materials that can be very damaging," Olvera de la Cruz says. "The impurities have to be very well controlled."

By changing the size of particles, materials researchers may be able to engineer defects in a convenient and precise manner.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Z. Yao, M. Olvera de la Cruz. Polydispersity-driven topological defects as order-restoring excitations. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1403679111

Cite This Page:

Northwestern University. "Expanding particles to engineer defects: Adding larger particle to crystalline system can create order rather than distortions." ScienceDaily. ScienceDaily, 8 April 2014. <www.sciencedaily.com/releases/2014/04/140408112206.htm>.
Northwestern University. (2014, April 8). Expanding particles to engineer defects: Adding larger particle to crystalline system can create order rather than distortions. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2014/04/140408112206.htm
Northwestern University. "Expanding particles to engineer defects: Adding larger particle to crystalline system can create order rather than distortions." ScienceDaily. www.sciencedaily.com/releases/2014/04/140408112206.htm (accessed September 2, 2014).

Share This




More Matter & Energy News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins