Featured Research

from universities, journals, and other organizations

Building 'smart' cell-based therapies

Date:
April 17, 2014
Source:
Northwestern University
Summary:
A technology for engineering human cells as therapies has been developed by scientists. The the technology becomes activated only in diseased tissues. It sits on the surface of a cell and can be programmed to sense specific external factors. For example, the engineered cell could detect big, soluble protein molecules that indicate that it's next to a tumor. When the biosensor detects such a factor, it sends a signal into the engineered cell's nucleus to activate a gene expression program, such as the production of tumor-killing proteins or chemicals.

Leonard and his team have developed a technology for engineering human cell-based 'devices' that monitor and modify human physiology. This technology is a protein biosensor that sits on the surface of a cell, can be programmed to sense specific external factors, and upon detecting these factors sends a signal into the engineered cell’s nucleus to activate a gene expression program.
Credit: Image courtesy of Northwestern University

A Northwestern synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other sites of disease.

Engineering cell-based, biological devices that monitor and modify human physiology is a promising frontier in clinical synthetic biology. However, no existing technology enabled bioengineers to build such devices that sense a patient's physiological state and respond in a customized fashion.

"The project addressed a key gap in the synthetic biology toolbox," says Joshua Leonard, assistant professor of chemical and biological engineering in Northwestern's McCormick School of Engineering and Applied Science. "There was no way to engineer cells in a manner that allowed them to sense key pieces of information about their environment, which could indicate whether the engineered cell is in healthy tissue or sitting next to a tumor."

Funded by the National Academies Keck Futures Initiative and the Defense Advanced Research Projects Agency, the research is available to read online in the journal ACS Synthetic Biology.

Leonard's team worked for nearly four years to close this gap. The end result is a protein biosensor that sits on the surface of a cell and can be programmed to sense specific external factors. For example, the engineered cell could detect big, soluble protein molecules that indicate that it's next to a tumor. When the biosensor detects such a factor, it sends a signal into the engineered cell's nucleus to activate a gene expression program, such as the production of tumor-killing proteins or chemicals. Since this toxic program would be activated only near tumor cells, such an approach could minimize side effects as well as improve therapeutic benefits.

Called a Modular Extracellular Sensor Architecture (MESA), the biosensor platform is completely self-contained so that several different biosensors can be present in a single cell without interfering with one another, allowing bioengineers to build increasingly sophisticated functional programs. The platform is also highly modular, enabling the biosensors to be customized to recognize factors of relevance to various patients' needs.

"By linking the output of these biosensors to genetic programs, one can build in a certain logical command, such as 'turn the output gene on when you sense this factor but not that factor,'" Leonard explains. "In that way, you could program a cell-based therapy to specify which cells it should kill."

Leonard says doctors could potentially collect immune cells from a patient's body, engineer the cells using MESA, and put them back into the patient. From there, the cells would do the work of detecting cancer or the disease they are designed to identify.

This is the first completely ground-up engineering of a receptor, and now that the core technology has been established, Leonard's team is moving forward to program cells to recognize specific tumor-associated factors. They are also looking toward applications beyond advanced cell-based therapies.

"This seems to be what always happens in synthetic biology," he says. "When you start building something, you first learn a lot about the system that you are trying to modify. In the end, you come up with not only useful applications but tools that facilitate basic science."


Story Source:

The above story is based on materials provided by Northwestern University. The original article was written by Amanda Morris. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nichole M. Daringer, Rachel M. Dudek, Kelly A. Schwarz, Joshua N. Leonard. Modular Extracellular Sensor Architecture for Engineering Mammalian Cell-based Devices. ACS Synthetic Biology, 2014; 140311062348002 DOI: 10.1021/sb400128g

Cite This Page:

Northwestern University. "Building 'smart' cell-based therapies." ScienceDaily. ScienceDaily, 17 April 2014. <www.sciencedaily.com/releases/2014/04/140417164200.htm>.
Northwestern University. (2014, April 17). Building 'smart' cell-based therapies. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2014/04/140417164200.htm
Northwestern University. "Building 'smart' cell-based therapies." ScienceDaily. www.sciencedaily.com/releases/2014/04/140417164200.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins