Featured Research

from universities, journals, and other organizations

'Exotic' material is like a switch when super thin

Date:
April 18, 2014
Source:
Cornell University
Summary:
Researchers have shown how to switch a particular transition metal oxide, a lanthanum nickelate, from a metal to an insulator by making the material less than a nanometer thick. Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance and other exotic properties. These possibilities have scientists excited to understand everything about these materials, and to find new ways to control their properties at the most fundamental levels.

Researchers have shown how to switch a particular transition metal oxide, a lanthanum nickelate (LaNiO3), from a metal to an insulator by making the material less than a nanometer thick.
Credit: Haofei Wei

Researchers from Cornell University and Brookhaven National Laboratory have shown how to switch a particular transition metal oxide, a lanthanum nickelate (LaNiO3), from a metal to an insulator by making the material less than a nanometer thick.

Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance and other exotic properties. These possibilities have scientists excited to understand everything about these materials, and to find new ways to control their properties at the most fundamental levels.

The team of researchers, which published its findings online April 6 in Nature Nanotechnology (to appear in the journal's May issue), includes lead researcher Kyle Shen, associate professor of physics; first author Phil King, a recent Kavli postdoctoral fellow at Cornell now on the faculty at the University of St. Andrews; Darrell Schlom, the Herbert Fisk Johnson Professor of Industrial Chemistry; and co-authors Haofei Wei, Yuefeng Nie, Masaki Uchida, Carolina Adamo, and Shabo Zhu, and Xi He and Ivan Božović.

Using an extremely precise growth technique called molecular-beam epitaxy (MBE), King synthesized atomically thin samples of the lanthanum nickelate and discovered that the material changes abruptly from a metal to an insulator when its thickness is reduced to below 1 nanometer. When that threshold is crossed, its conductivity -- the ability for electrons to flow through the material -- switches off like a light, a characteristic that could prove useful in nanoscale switches or transistors, Shen said.

Using a one-of-a-kind system at Cornell, which integrates MBE film growth with a technique called angle-resolved photoemission spectroscopy (ARPES), King and colleagues mapped out how the motions and interactions of the electrons in the material changed across this threshold, varying the thickness of their oxide films atom by atom. They discovered that when the films were less than 3 nickel atoms thick, the electrons formed an unusual nanoscale order, akin to a checkerboard.

The results demonstrate the ability to control the electronic properties of exotic transition metal oxides at the nanometer scale, as well as revealing the striking cooperative interactions that govern the behavior of the electrons in these ultrathin materials. Their discovery paves the way for making advanced new electronic devices from oxides.


Story Source:

The above story is based on materials provided by Cornell University. The original article was written by Vasyl Kacapyr. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. D. C. King, H. I. Wei, Y. F. Nie, M. Uchida, C. Adamo, S. Zhu, X. He, I. Božović, D. G. Schlom, K. M. Shen. Atomic-scale control of competing electronic phases in ultrathin LaNiO3. Nature Nanotechnology, 2014; DOI: 10.1038/nnano.2014.59

Cite This Page:

Cornell University. "'Exotic' material is like a switch when super thin." ScienceDaily. ScienceDaily, 18 April 2014. <www.sciencedaily.com/releases/2014/04/140418141119.htm>.
Cornell University. (2014, April 18). 'Exotic' material is like a switch when super thin. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2014/04/140418141119.htm
Cornell University. "'Exotic' material is like a switch when super thin." ScienceDaily. www.sciencedaily.com/releases/2014/04/140418141119.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins