Featured Research

from universities, journals, and other organizations

Predicting drift of floating pumice 'islands' can benefit shipping

Date:
April 23, 2014
Source:
University of Southampton
Summary:
A new technique will aid in predicting the dispersal and drift patterns of large floating ‘islands’ of pumice created by volcanic eruptions at sea. Known as pumice rafts, these large mobile accumulations of pumice fragments can spread to affect a considerable area of the ocean, damaging vessels and disrupting shipping routes for months or even years. The ability to predict where these rafts will end up could give enough advance warning for protective measures to be put in place on shipping routes or in harbours where the presence of pumice is hazardous.

Havre Seamount pumice raft drift graph.
Credit: University of Southampton

A technique presented in Nature Communications by researchers from the National Oceanography Centre Southampton (NOCS) and the University of Southampton will aid in predicting the dispersal and drift patterns of large floating 'islands' of pumice created by volcanic eruptions at sea.

Known as pumice rafts, these large mobile accumulations of pumice fragments can spread to affect a considerable area of the ocean, damaging vessels and disrupting shipping routes for months or even years. The ability to predict where these rafts will end up could give enough advance warning for protective measures to be put in place on shipping routes or in harbours where the presence of pumice is hazardous.

Martin Jutzeler, Post-Doctoral Research Fellow at NOCS, and a team of colleagues simulated the drift of a massive 400km2 raft of pumice from Havre, a deep submarine volcano in the southwest Pacific, using a high-resolution model of the global ocean circulation. The team, which included researchers from the University of Tasmania in Australia, the University of Otago in New Zealand and Stanford University in the United States, then tested the results against satellite imagery plus direct observations from sailing crews, to show that they can accurately reproduce surface drift using this method and note that this large-scale natural experiment validates the physics of the model.

This technique, they believe, can be used to forecast dispersal routes of potentially hazardous pumice rafts from future eruptions, mitigating potential risks to ships and allowing authorities to protect harbours. The same high-fidelity particle tracking can also be used to predict the spread of other floating objects in surface ocean waters, such as anthropogenic waste or passively-drifting organisms.

"Pumice in rafts can drift for years, become waterlogged and sink, or become stranded on shorelines. For a variety of reasons, it's important that we develop a better understanding of their formation, movement and dispersal over time," said Dr Bob Marsh, Reader in Physical Oceanography at the University of Southampton who was part of the research team. "The pumice raft used in our research was formed by the impressive, deep submarine eruption of the Havre caldera volcano in the southwest Pacific in July 2012 was perfect for our research. The eruption was far from coastal interferences so produced a single raft spanning over 400 square kilometres in one day, thus initiating a gigantic, high-precision, natural experiment in surface dispersion, in a region dominated by eddies -- the oceanic equivalent of weather systems."

"Our research shows how observed raft dispersal can be accurately reproduced by simulating drift and dispersal patterns using currents from an eddy-resolving ocean model hindcast," Dr Marsh continued. "For future eruptions that produce potentially hazardous pumice rafts, our technique allows real-time forecasts of dispersal routes, in addition to inference of ash/pumice deposit distribution in the deep ocean."


Story Source:

The above story is based on materials provided by University of Southampton. Note: Materials may be edited for content and length.


Journal Reference:

  1. Martin Jutzeler, Robert Marsh, Rebecca J. Carey, James D. L. White, Peter J. Talling, Leif Karlstrom. On the fate of pumice rafts formed during the 2012 Havre submarine eruption. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4660

Cite This Page:

University of Southampton. "Predicting drift of floating pumice 'islands' can benefit shipping." ScienceDaily. ScienceDaily, 23 April 2014. <www.sciencedaily.com/releases/2014/04/140423132503.htm>.
University of Southampton. (2014, April 23). Predicting drift of floating pumice 'islands' can benefit shipping. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2014/04/140423132503.htm
University of Southampton. "Predicting drift of floating pumice 'islands' can benefit shipping." ScienceDaily. www.sciencedaily.com/releases/2014/04/140423132503.htm (accessed August 20, 2014).

Share This




More Earth & Climate News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Disquieting Times for Malaysia's 'fish Listeners'

Disquieting Times for Malaysia's 'fish Listeners'

AFP (Aug. 19, 2014) Malaysia's last "fish listeners" -- practitioners of a dying local art of listening underwater to locate their quarry -- try to keep the ancient technique alive in the face of industrial trawling and the depletion of stocks. Duration: 02:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins