Featured Research

from universities, journals, and other organizations

Hearing quality restored with bionic ear technology used for gene therapy: Re-growing auditory nerves

Date:
April 23, 2014
Source:
University of New South Wales
Summary:
Researchers have for the first time used electrical pulses delivered from a cochlear implant to deliver gene therapy, thereby successfully regrowing auditory nerves. The research also heralds a possible new way of treating a range of neurological disorders, including Parkinson's disease, and psychiatric conditions such as depression through this novel way of delivering gene therapy.

This shows regenerated auditory nerves after gene therapy (top) compared with no treatment (below).
Credit: UNSW Translational Neuroscience Facility

Researchers at UNSW Australia have for the first time used electrical pulses delivered from a cochlear implant to deliver gene therapy, thereby successfully regrowing auditory nerves.

The research also heralds a possible new way of treating a range of neurological disorders, including Parkinson's disease, and psychiatric conditions such as depression through this novel way of delivering gene therapy.

The research is published today (Thursday 24 April) in the journal Science Translational Medicine.

"People with cochlear implants do well with understanding speech, but their perception of pitch can be poor, so they often miss out on the joy of music," says UNSW Professor Gary Housley, who is the senior author of the research paper.

"Ultimately, we hope that after further research, people who depend on cochlear implant devices will be able to enjoy a broader dynamic and tonal range of sound, which is particularly important for our sense of the auditory world around us and for music appreciation," says Professor Housley, who is also the Director of the Translational Neuroscience Facility at UNSW Medicine.

The research, which has the support of Cochlear Limited through an Australian Research Council Linkage Project grant, has been five years in development.

The work centres on regenerating surviving nerves after age-related or environmental hearing loss, using existing cochlear technology. The cochlear implants are "surprisingly efficient" at localised gene therapy in the animal model, when a few electric pulses are administered during the implant procedure.

"This research breakthrough is important because while we have had very good outcomes with our cochlear implants so far, if we can get the nerves to grow close to the electrodes and improve the connections between them, then we'll be able to have even better outcomes in the future," says Jim Patrick, Chief Scientist and Senior Vice-President, Cochlear Limited.

It has long been established that the auditory nerve endings regenerate if neurotrophins -- a naturally occurring family of proteins crucial for the development, function and survival of neurons -- are delivered to the auditory portion of the inner ear, the cochlea.

But until now, research has stalled because safe, localised delivery of the neurotrophins can't be achieved using drug delivery, nor by viral-based gene therapy.

Professor Housley and his team at UNSW developed a way of using electrical pulses delivered from the cochlear implant to deliver the DNA to the cells close to the array of implanted electrodes. These cells then produce neurotrophins.

"No-one had tried to use the cochlear implant itself for gene therapy," says Professor Housley. "With our technique, the cochlear implant can be very effective for this."

While the neurotrophin production dropped away after a couple of months, Professor Housley says ultimately the changes in the hearing nerve may be maintained by the ongoing neural activity generated by the cochlear implant.

"We think it's possible that in the future this gene delivery would only add a few minutes to the implant procedure," says the paper's first author, Jeremy Pinyon, whose PhD is based on this work. "The surgeon who installs the device would inject the DNA solution into the cochlea and then fire electrical impulses to trigger the DNA transfer once the implant is inserted."

Integration of this technology into other 'bionic' devices such as electrode arrays used in deep brain stimulation (for the treatment of Parkinson's disease and depression, for example) could also afford opportunities for safe, directed gene therapy of complex neurological disorders.

"Our work has implications far beyond hearing disorders," says co-author Associate Professor Matthias Klugmann, from the UNSW Translational Neuroscience Facility research team. "Gene therapy has been suggested as a treatment concept even for devastating neurological conditions and our technology provides a novel platform for safe and efficient gene transfer into tissues as delicate as the brain."


Story Source:

The above story is based on materials provided by University of New South Wales. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jeremy L. Pinyon, Sherif F. Tadros, Kristina E. Froud, Ann C. Y. Wong, Isabella T. Tompson, Edward N. Crawford, Myungseo Ko, Renιe Morris, Matthias Klugmann and Gary D. Housley. Close-Field Electroporation Gene Delivery Using the Cochlear Implant Electrode Array Enhances the Bionic Ear. Science Translational Medicine, 2014 DOI: 10.1126/scitranslmed.3008177

Cite This Page:

University of New South Wales. "Hearing quality restored with bionic ear technology used for gene therapy: Re-growing auditory nerves." ScienceDaily. ScienceDaily, 23 April 2014. <www.sciencedaily.com/releases/2014/04/140423143011.htm>.
University of New South Wales. (2014, April 23). Hearing quality restored with bionic ear technology used for gene therapy: Re-growing auditory nerves. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2014/04/140423143011.htm
University of New South Wales. "Hearing quality restored with bionic ear technology used for gene therapy: Re-growing auditory nerves." ScienceDaily. www.sciencedaily.com/releases/2014/04/140423143011.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) — Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) — A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) — A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins