Featured Research

from universities, journals, and other organizations

Galaxy's biggest telescope harnesses most precise measurement of spinning star

Date:
May 6, 2014
Source:
International Centre for Radio Astronomy Research (ICRAR)
Summary:
An international team of astronomers has made a measurement of a distant neutron star that is one million times more precise than the previous world’s best. The researchers were able to use the interstellar medium, the 'empty' space between stars and galaxies that is made up of sparsely spread charged particles, as a giant lens to magnify and look closely at the radio wave emission from a small rotating neutron star.

The densely packed matter of a pulsar spins at incredible speeds, and emits radio waves that can be observed from Earth, but how neutron stars emit these waves is still a mystery.
Credit: Swinburne Astronomy Productions/CAASTRO

An international team of astronomers has made a measurement of a distant neutron star that is one million times more precise than the previous world's best.

Related Articles


The researchers were able to use the interstellar medium, the 'empty' space between stars and galaxies that is made up of sparsely spread charged particles, as a giant lens to magnify and look closely at the radio wave emission from a small rotating neutron star.

This technique yielded the highest resolution measurement ever achieved, equivalent to being able to see the double-helix structure of our genes from the Moon!

"Compared to other objects in space, neutron stars are tiny -- only tens of kilometres in diameter -- so we need extremely high resolution to observe them and understand their physics," Dr Jean-Pierre Macquart from the Curtin University node of the International Centre for Radio Astronomy Research (ICRAR) in Perth said.

Dr Macquart, a member of the ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), said neutron stars were particularly interesting objects to study, as some of them -- called pulsars -- gave off pulsed radio waves whose beams swept across telescopes at regular intervals.

"More than 45 years since astronomers discovered pulsars, we still don't understand the mechanism by which they emit radio wave pulses," he said.

The researchers found they could use the distortions of these pulse signals as they passed through the turbulent interstellar medium to reconstruct a close in view of the pulsar from thousands of individual sub-images of the pulsar.

"The best we could previously do was pointing a large number of radio telescopes across the world at the same pulsar, using the distance between the telescopes on Earth to get good resolution," Dr Macquart said.

The previous record using combined views from many telescopes was an angular resolution of 50 microarcseconds, but the team -- led by Professor Ue-Li Pen of the Canadian Institute of Theoretical Astrophysics and a CAASTRO Partner Investigator -- has now proven their 'interstellar lens' can get down to 50 picoarcseconds, or a million times more detail, resolving areas of less than 5km in the emission region.

"Our new method can take this technology to the next level and finally get to the bottom of some hotly debated theories about pulsar emission," Professor Pen said.

Testing their technique on pulsar B0834+06, the researchers found the neutron star's emission region was much smaller than previously assumed and possibly much closer to the star's surface -- which might be the most crucial element in understanding the origin of the radio wave emission.

"What's more, this new technique also opens up the possibilities for precise distance measurements to pulsars that orbit a companion star and 'image' their extremely small orbits -- which is ultimately a new and highly sensitive test of Einstein's theory of General Relativity," Professor Pen said.


Story Source:

The above story is based on materials provided by International Centre for Radio Astronomy Research (ICRAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. U.-L. Pen, J.-P. Macquart, A. T. Deller, W. Brisken. 50 picoarcsec astrometry of pulsar emission. Monthly Notices of the Royal Astronomical Society: Letters, 2014; 440 (1): L36 DOI: 10.1093/mnrasl/slu010

Cite This Page:

International Centre for Radio Astronomy Research (ICRAR). "Galaxy's biggest telescope harnesses most precise measurement of spinning star." ScienceDaily. ScienceDaily, 6 May 2014. <www.sciencedaily.com/releases/2014/05/140506074456.htm>.
International Centre for Radio Astronomy Research (ICRAR). (2014, May 6). Galaxy's biggest telescope harnesses most precise measurement of spinning star. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2014/05/140506074456.htm
International Centre for Radio Astronomy Research (ICRAR). "Galaxy's biggest telescope harnesses most precise measurement of spinning star." ScienceDaily. www.sciencedaily.com/releases/2014/05/140506074456.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Space & Time News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Asteroid's Moon Spotted During Earth Flyby

Asteroid's Moon Spotted During Earth Flyby

Rumble (Jan. 27, 2015) Scientists working with NASA&apos;s Deep Space Network antenna at Goldstone, California discovered an unexpected moon while observing asteroid 2004 BL86 during its recent flyby past Earth. Credit to &apos;NASA JPL&apos;. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Mars Rover Opportunity Celebrates 11-Year Anniversary

Mars Rover Opportunity Celebrates 11-Year Anniversary

Rumble (Jan. 26, 2015) Eleven years ago NASA&apos;s Opportunity rover touched down on Mars for what was only supposed to be a 90-day mission. Since then it has traveled 25.9 miles (41.7 kilometers), further than any other off-Earth surface vehicle has ever driven. Credit to &apos;NASA&apos;. Video provided by Rumble
Powered by NewsLook.com
NASA's On Course To Take Pluto's Best Photo Ever

NASA's On Course To Take Pluto's Best Photo Ever

Newsy (Jan. 25, 2015) NASA&apos;s New Horizons probe is en route to snap a picture of Pluto this summer, but making sure it doesn&apos;t miss its one chance to do so starts now. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins