Featured Research

from universities, journals, and other organizations

Dolphin whistle warnings: Remotely monitoring acoustical changes in dolphin whistles may be powerful new tool for conservation

Date:
May 6, 2014
Source:
Acoustical Society of America (ASA)
Summary:
A team of researchers has demonstrated that remotely monitoring the acoustical structures of dolphin vocalizations can effectively detect "evolutionarily significant units" of the mammal -- distinct populations that may be tracked for prioritizing and planning conservation efforts.

Two dolphins.
Credit: sanilda / Fotolia

A team of researchers in Italy, Portugal, Spain, France, Britain and the United States has demonstrated that remotely monitoring the acoustical structures of dolphin vocalizations can effectively detect "evolutionarily significant units" of the mammal -- distinct populations that may be tracked for prioritizing and planning conservation efforts.

Related Articles


This finding, presented at the 167th meeting of the Acoustical Society of America, to be held May 5-9, 2014, in Providence, Rhode Island, suggests that placing remote acoustical monitoring platforms on ocean buoys and the like may be a viable, low-cost and automated way of monitoring populations of dolphins and rapidly alerting ecologists to the threats that confront them.

"Acoustical changes can be used for constant and continuous monitoring of population belonging to endangered species," said Elena Papale of the University of Torino, who led the research. "We found that [by remotely monitoring dolphin whistles], it is possible to distinguish between evolutionary significant units."

The discovery emerged from a large, multinational collaboration that pulled together data from five research groups based in Italy, Portugal, Spain, Britain and France. Those groups were already monitoring dolphins for a number of existing scientific studies. Other groups in the United States collaborated by providing sound analysis equipment. Shepherding all these groups of people and the flood of data they produced was a challenge, Papale said, but the greater challenge was working out how to distinguish the flood of whistles from one group of dolphins from another.

Animal vocalizations have acoustic characteristics that reflect an organism's genes, its adaptation to ecological conditions and the interactions between their genes and the environment. The differences between groups of dolphins within the same species may be slight and hard to detect however, because morphological features, ecological conditions and socio-behavioral aspects of the creatures influence the structure of whistle. The problem is also a dynamic one, since vocalizations may vary in short time scale.

So at the start of the research, it was not clear whether acoustical analyses alone would be able to tease apart the common threads for given groups of dolphins and differentiate between them.

Papale and her colleagues compared 123 sightings of three dolphin species from the Atlantic Ocean and the Mediterranean Sea (Stenella coeruleoalba, Delphinus delphis and Tursiops truncatus). They analyzed whistles from 49 hours of audio recordings made at the same time as the sightings and tested whether they could definitively identify dolphin populations by analyzing the acoustical parameters of the whistles.

This allowed them to correctly assign more that 82 percent of data to the correct dolphin population, based solely on the acoustic structure, a proof of principle that the acoustic structure of whistles can be used to monitor recent or rapid changes in the local population biology.

"More work is still needed to develop an automatic system for population recognition," Papale said. She added that other research groups are focusing on the development of software but for the moment only for species-specific identification, not intra-specific recognition.


Story Source:

The above story is based on materials provided by Acoustical Society of America (ASA). Note: Materials may be edited for content and length.


Cite This Page:

Acoustical Society of America (ASA). "Dolphin whistle warnings: Remotely monitoring acoustical changes in dolphin whistles may be powerful new tool for conservation." ScienceDaily. ScienceDaily, 6 May 2014. <www.sciencedaily.com/releases/2014/05/140506161230.htm>.
Acoustical Society of America (ASA). (2014, May 6). Dolphin whistle warnings: Remotely monitoring acoustical changes in dolphin whistles may be powerful new tool for conservation. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2014/05/140506161230.htm
Acoustical Society of America (ASA). "Dolphin whistle warnings: Remotely monitoring acoustical changes in dolphin whistles may be powerful new tool for conservation." ScienceDaily. www.sciencedaily.com/releases/2014/05/140506161230.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins