Featured Research

from universities, journals, and other organizations

How fish were able to colonize poisonous springs: A tale of survival

Date:
May 12, 2014
Source:
Senckenberg Research Institute and Natural History Museum
Summary:
Hydrogen sulphide is a potent inhibitor of aerobic respiration. However populations of shortfin molly fish managed to colonize springs with high concentrations of dissolved hydrogen sulphide. In a new study, researchers present evidence of genetic changes minimizing the harmful effects of hydrogen sulphide which enable the fish to survive in this deleterious environment. The study provides insight into the molecular mechanisms of this key adaptation for the first time.

Poecilia mexicana.
Credit: M.Pfenninger

Hydrogen sulphide (H2S) is a potent inhibitor of aerobic respiration. However populations of shortfin molly fish managed to colonise springs with high concentrations of dissolved hydrogen sulphide. In a new study researchers from LOEWE Biodiversity and Climate Research Centre (BiK-F) and the Goethe University Frankfurt am Main present evidence of genetic changes minimizing the harmful effects of H2S which enable the fish to survive in this deleterious environment. The study provides insight into the molecular mechanisms of this key adaptation for the first time. It is published online today in "Nature Communications."

Shortfin molly fishes (Poecilia mexicana) may only measure a few inches, but they are still exceptional. Populations of Poecilia mexicana, whose relatives are the well-known guppy, colonised sulphide-rich volcanic springs in Southern Mexico. In making this particular habitat their home, they have made the impossible possible, because hydrogen sulphide (H2S), as for many other animal, is lethal. Even at low concentrations the gas blocks the cytochrome c oxidase-complex (COX). The higher the level of hydrogen sulphide, the more the activity of COX is inhibited. As it is essential for respiration, this turns out to be lethal in the end.

Changes in genetic make-up make less susceptible to poison A team led by Prof. Dr. Markus Pfenninger, LOEWE Biodiversity and Climate Research Centre (BiK-F) and PD Dr. Martin Plath, Goethe University, has taken a closer look at the survivors. Their analysis showed that the COX activity of individuals of shortfin molly fish which colonise H2S-rich waters remains virtually unchanged under high H2S concentrations. This is due to number of changes in the cox1 and cox3 genes, which have only occurred in populations living in the poisonous springs. Thus, transplanting individuals from non-sulphidic habitat to springs with high H2S levels kills them for sure.

Molecular mechanisms of adaptation to extreme habitat "In this paper we analyse the key adaptation to an extreme habitat up to its molecular basis at the level of amino acids. This way, for the first time, we are able to point out, where exactly the adaption has taken place." Pfenninger concludes. The team also modelled three dimensional protein structures in order to shed light on necessary significant structural changes of amino acids in the cox1 gene. Without these structural changes, the colonisation of the H2S-containing water for the fish would have been impossible. By colonising the poisonous springs, where there are hardly any other competitors, the fish may feed on resistant midge larvae that also occur there.

Closely related fish follow different paths to adaptation The study also shows that closely related populations of a species follow parallel as well as disparate paths in response to similar environmental conditions. Three shortfin molly fish populations were sampled for study. Two of the populations show the same changes in their genetic material in adapting to the hostile conditions. However this proved to be not the case for the third population of shortfin molly fish. Whereas these fish also tolerate high levels hydrogen sulphide, the mechanism enabling their adaptation is still subject to ongoing research.


Story Source:

The above story is based on materials provided by Senckenberg Research Institute and Natural History Museum. Note: Materials may be edited for content and length.


Journal Reference:

  1. Markus Pfenninger, Hannes Lerp, Michael Tobler, Courtney Passow, Joanna L Kelley, Elisabeth Funke, Bastian Greshake, Umut Kaan Erkoc, Thomas Berberich, Martin Plath. Parallel evolution of cox genes in H2S-tolerant fish as key adaptation to a toxic environment. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4873

Cite This Page:

Senckenberg Research Institute and Natural History Museum. "How fish were able to colonize poisonous springs: A tale of survival." ScienceDaily. ScienceDaily, 12 May 2014. <www.sciencedaily.com/releases/2014/05/140512101423.htm>.
Senckenberg Research Institute and Natural History Museum. (2014, May 12). How fish were able to colonize poisonous springs: A tale of survival. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2014/05/140512101423.htm
Senckenberg Research Institute and Natural History Museum. "How fish were able to colonize poisonous springs: A tale of survival." ScienceDaily. www.sciencedaily.com/releases/2014/05/140512101423.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins