Featured Research

from universities, journals, and other organizations

Role of calcium in familial Alzheimer's disease clarified, pointing to new therapeutics

Date:
May 13, 2014
Source:
University of Pennsylvania School of Medicine
Summary:
Mutations in two presenilin proteins associated with familial Alzheimer's disease disrupt the flow of calcium ions within neurons. Researchers have found that suppressing the hyperactivity of the calcium channels alleviated FAD-like symptoms in mice models of the disease. These new observations suggest that approaches based on modulating calcium signaling could be explored for new AD therapies.

Amyloid-beta (antibody 12F4) and hyper-phosphorylated tau (antibody AT180) immunostaining of hippocampus from 18-month-old mice. Amyloid plaques (top row) and intracellular tau tangles (bottom row) in the 3xTg mouse were strongly reduced by genetic deletion of 50 percent of the IP3R1 in the 3xTg/Opt mouse. Wild-type (WT) and Opt mice expressing 50 percent of InsP3R exhibited no pathology.
Credit: J. Kevin Foskett, Ph.D., & Dustin Shilling; Perelman School of Medicine at the University of Pennsylvania

In 2008 researchers at the Perelman School of Medicine at the University of Pennsylvania showed that mutations in two proteins associated with familial Alzheimer's disease (FAD) disrupt the flow of calcium ions within neurons. The two proteins interact with a calcium release channel in an intracellular compartment. Mutant forms of these proteins that cause FAD, but not the normal proteins, result in exaggerated calcium signaling in the cell.

Related Articles


Now, the same team, led by J. Kevin Foskett, PhD, chair of Physiology, and a graduate student, Dustin Shilling, has found that suppressing the hyperactivity of the calcium channels alleviated FAD-like symptoms in mice models of the disease. Their findings appear this week in the Journal of Neuroscience.

Current therapies for Alzheimer's include drugs that treat the symptoms of cognitive loss and dementia, and drugs that address the pathology of Alzheimer's are experimental. These new observations suggest that approaches based on modulating calcium signaling could be explored, says Foskett.

The two proteins, called PS1 and PS2 (presenilin 1 and 2), interact with a calcium release channel, the inositol trisphosphate receptor (IP3R), in the endoplasmic reticulum. Mutant PS1 and PS2 increase the activity of the IP3R, in turn increasing calcium levels in the cell. "We set out to answer the question: Is increased calcium signaling, as a result of the presenilin-IP3R interaction, involved in the development of familial Alzheimer's disease symptoms, including dementia and cognitive deficits?" says Foskett. "And looking at the findings of these experiments, the answer is a resounding 'yes.'"

Robust Phenomenon

Exaggerated intracellular calcium signaling is a robust phenomenon seen in cells expressing FAD-causing mutant presenilins, in both human cells in culture and in mice. The team used two FAD mouse models to look for these connections. Specifically, they found that reducing the expression of IP3R1, the dominant form of this receptor in the brain, by 50 percent, normalized the exaggerated calcium signaling observed in neurons of the cortex and hippocampus in both mouse models.

In addition, using 3xTg mice -- animals that contain presenilin 1 with an FAD mutation, as well as expressed mutant human tau protein and APP genes -- the team observed that the reduced expression of IP3R1 profoundly decreased amyloid plaque accumulation in brain tissue and the hyperphosphorylation of tau protein, a biochemical hallmark of advanced Alzheimer's disease. Reduced expression of IP3R1 also rescued defective electrical signaling in the hippocampus, as well and memory deficits in the 3xTg mice, as measured by behavioral tests.

"Our results indicate that exaggerated calcium signaling, which is associated with presenilin mutations in familial Alzheimer's disease, is mediated by the IP3R and contributes to disease symptoms in animals," says Foskett. "Knowing this now, the IP3 signaling pathway could be considered a potential therapeutic target for patients harboring mutations in presenilins linked to AD."

The 'calcium dysregulation' hypothesis

"The 'calcium dysregulation' hypothesis for inherited, early-onset familial Alzheimer's disease has been suggested by previous research findings in the Foskett lab. Alzheimer's disease affects as many as 5 million Americans, 5 percent of whom have the familial form. The hallmark of the disease is the accumulation of tangles and plaques of amyloid beta protein in the brain.

"The 'amyloid hypothesis' that postulates that the primary defect is an accumulation of toxic amyloid in the brain has long been used to explain the cause of Alzheimer's," says Foskett. In his lab's 2008 Neuron study, cells that carried the disease-causing mutated form of PS1 showed increased processing of amyloid beta that depended on the interaction of the PS proteins with the IP3R. This observation links dysregulation of calcium inside cells with the production of amyloid, a characteristic feature in the brains of people with Alzheimer's disease.

Clinical trials for AD have largely been directed at reducing the amyloid burden in the brain. So far, says Foskett, these trials have failed to demonstrate therapeutic benefits. One idea is that the interventions started too late in the disease process. Accordingly, anti-amyloid clinical trials are now underway using asymptomatic FAD patients because it is known that they will eventually develop the disease, whereas predicting who will develop the common form of AD is much less certain.

"There has been an assumption that FAD is simply AD with an earlier, more aggressive onset," says Foskett. "However, we don't know if the etiology of FAD pathology is the same as that for common AD. So the relevance of our findings for understanding common AD is not clear. What's important, in my opinion, is to recognize that AD could be a spectrum of diseases that result in common end-stage pathologies. FAD might therefore be considered an orphan-disease, and it's important to find effective treatments, specifically for these patients -- ones that target the IP3R and calcium signaling."


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Role of calcium in familial Alzheimer's disease clarified, pointing to new therapeutics." ScienceDaily. ScienceDaily, 13 May 2014. <www.sciencedaily.com/releases/2014/05/140513175211.htm>.
University of Pennsylvania School of Medicine. (2014, May 13). Role of calcium in familial Alzheimer's disease clarified, pointing to new therapeutics. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2014/05/140513175211.htm
University of Pennsylvania School of Medicine. "Role of calcium in familial Alzheimer's disease clarified, pointing to new therapeutics." ScienceDaily. www.sciencedaily.com/releases/2014/05/140513175211.htm (accessed October 30, 2014).

Share This



More Mind & Brain News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Studying Effects of Music on Dementia Patients

Studying Effects of Music on Dementia Patients

AP (Oct. 30, 2014) The University of Wisconsin-Milwaukee is studying the popular Music and Memory program to see if music, which helps improve the mood of Alzheimer's patients, can also reduce the use of prescription drugs for those suffering from dementia. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Techy Tots Are Forefront of London's Baby Show

Techy Tots Are Forefront of London's Baby Show

AP (Oct. 28, 2014) Moms and Dads get a more hands-on approach to parenting with tech-centric products for raising their little ones. (Oct. 28) Video provided by AP
Powered by NewsLook.com
Cocoa Could Be As Good For Memory As It Is For A Sweet Tooth

Cocoa Could Be As Good For Memory As It Is For A Sweet Tooth

Newsy (Oct. 27, 2014) Researchers have come up with another reason why dark chocolate is good for your health. A substance in the treat can reportedly help with memory. Video provided by Newsy
Powered by NewsLook.com
Five-Year-Olds Learn Coding as Britain Eyes Digital Future

Five-Year-Olds Learn Coding as Britain Eyes Digital Future

AFP (Oct. 27, 2014) Coding has become compulsory for children as young as five in schools across the UK. Making it the first major world economy to overhaul its IT teaching and put programming at its core. Duration: 02:19 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins