Featured Research

from universities, journals, and other organizations

Microsatellites: Making light work of orbit and attitude control

Date:
May 21, 2014
Source:
Fraunhofer-Gesellschaft
Summary:
Microsatellites have to be very light – every gram counts. The same applies to the gyroscopes used to sense the satellite’s orientation when in orbit. A novel prototype is seven times lighter and significantly smaller than earlier systems.

The new gyroscope could one day help a satellite bus like this with attitude detection: the platform of the approximately one-meter long TET-1 satellite.
Credit: © Astro Feinwerktechnik Adlershof GmbH

Microsatellites have to be very light -- every gram counts. The same applies to the gyroscopes used to sense the satellite's orientation when in orbit. A novel prototype is seven times lighter and significantly smaller than earlier systems.

When you observe the sky on a clear night, the twinkling objects you see may not only be stars but also human-made satellites. Occasionally visible from Earth, these orbiting spacecraft come in different sizes, from large telecommunications and TV satellites to the smaller scientific satellites that serve as space laboratories. The measuring instruments they carry on board send back data to researchers on the ground for use in various projects. An example is the TET satellite, which scientists are using to test the capacity of new measuring systems to withstand the inhospitable conditions of space missions. If they pass these tests, they can be incorporated in other small satellites.

One such system is the gyroscope developed by researchers at the Fraunhofer Institute for Reliability and Microintegration IZM in Berlin in collaboration with the engineering specialists at Astro- und Feinwerktechnik Adlershof GmbH. Satellites use gyroscopic sensors to determine their orientation relative to their orbital position as a backup system if their star tracker is inoperative or if star visibility is degraded. Such attitude control systems require at least three gyroscopes, one for each direction of movement. They measure the satellite's rate of rotation and calculate its orientation on the basis of the most recent reliable data supplied by the star tracker.

The gyroscopes must be able to withstand the extreme temperature fluctuations encountered in low Earth orbit -- where temperatures range between minus 40 and plus 80 degrees Celsius -- without damage, and remain operable for several years despite the high solar radiation. A further requirement is that they should be as small and light as possible, because payload capacity is limited and every gram saved on the launch pad immediately translates into lower costs. Finally, the gyroscopes must be energy-efficient, because microsatellites only have a tiny solar panel to generate the power they need.

No larger than a wallet

"Our gyroscope withstands the inhospitable conditions of space, and is also significantly smaller, lighter, and consumes less energy than comparable solutions," says Michael Scheiding, managing director of Astro- und Feinwerktechnik Adlershof GmbH. Instead of the usual 7.5 kilograms, it weighs in at a little less than one kilo. And the scientists have also significantly reduced its volume. While similar devices are usually about the size of a shoe box, the new gyroscope measures just 10 by 14 by 3 centimeters, i.e. no larger than a wallet. The researchers' ultimate aim is to halve the size of the system yet again. Another advantage is that it requires approximately half as much energy as comparable devices.

How did the researchers achieve this result? To find out, it is necessary to take a look inside the fiber-optic gyroscope. Its main component is a fiber coil, a core with one to two kilometers of fiber wrapped around it. The longer the fiber, the more accurate the gyroscope. "We have reduced the length of the fiber to 400 meters, but can still obtain the same level of accuracy," says Marcus Heimann, a researcher at IZM. "One of the things we did to achieve this was to select more efficient optical components." The splice points between the different fibers that link the light source, the detector, and the coil have also been optimized. The scientists will be presenting their prototype at the Sensor + Test trade show in Nürnberg from June 3 to 5 (Hall 12, Booth 12-537). Visitors can test how accurately the gyroscope determines the rate of rotation by making it rotate on a turntable.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Microsatellites: Making light work of orbit and attitude control." ScienceDaily. ScienceDaily, 21 May 2014. <www.sciencedaily.com/releases/2014/05/140521094515.htm>.
Fraunhofer-Gesellschaft. (2014, May 21). Microsatellites: Making light work of orbit and attitude control. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2014/05/140521094515.htm
Fraunhofer-Gesellschaft. "Microsatellites: Making light work of orbit and attitude control." ScienceDaily. www.sciencedaily.com/releases/2014/05/140521094515.htm (accessed September 16, 2014).

Share This



More Space & Time News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

East Coast Treated To Rare Meteor Sighting

East Coast Treated To Rare Meteor Sighting

Newsy (Sep. 16, 2014) — Numerous residents along the East Coast reported seeing a bright meteor flash through the sky Sunday night. Video provided by Newsy
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
NASA’s Curiosity Rover Finally Reaches Long-Term Goal

NASA’s Curiosity Rover Finally Reaches Long-Term Goal

Newsy (Sep. 15, 2014) — After more than two years, NASA’s Mars Curiosity Rover reached Mount Sharp, its long-term destination. Video provided by Newsy
Powered by NewsLook.com
SpaceX's Elon Musk Really Wants To Colonize Mars

SpaceX's Elon Musk Really Wants To Colonize Mars

Newsy (Sep. 14, 2014) — Elon Musk has been talking about his goal of colonizing Mars for years now, but how much of it does he actually have figured out, and is it possible? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins