Featured Research

from universities, journals, and other organizations

Gene behind unhealthy adipose tissue identified

Date:
May 22, 2014
Source:
Karolinska Institutet
Summary:
A gene driving the development of pernicious adipose tissue in humans has been identified by researchers for the first time. The findings imply that the gene may constitute a risk factor promoting the development of insulin resistance and type 2 diabetes. "Our findings represent an important step forward in the understanding of how adipose tissue links to the development of metabolic disease," comments one of the principal investigators.

Dr. Peter Arner, Ph.D., is a Professor of Medicine at Karolinska Institutet in Stockholm, Sweden.
Credit: Stefan Zimmerman

Researchers at Karolinska Institutet in Sweden have for the first time identified a gene driving the development of pernicious adipose tissue in humans. The findings imply, which are published in the scientific journal Cell Metabolism, that the gene may constitute a risk factor promoting the development of insulin resistance and type 2 diabetes.

Related Articles


Adipose tissue can expand in two ways: by increasing the size and/or the number of the fat cells. It is well established that subjects with few but large fat cells, so-called hypertrophy, display an increased risk of developing type 2-diabetes. In the current study, researchers identified a gene, EBF1, which according to these new findings drive the development of the unhealthy adipose tissue. This gene encodes a protein that controls a set of other genes, a so-called transcription factor, and regulates the formation of new fat cells as well as their metabolic function.

The investigators compared adipose tissue from subjects with small or large fat cells and found that EBF1 was closely linked to hypertrophy. Individuals with large fat cells had markedly lower EBF1 expression in their adipose tissue, displayed altered lipid mobilisation and were insulin resistant. Insulin resistance -- a condition characterised by reduced cellular response to the hormone insulin that is released when the blood glucose levels rise after a meal -- is an important causal factor underlying the increased risk of diabetes in individuals with hypertrophic adipose tissue. Insulin resistance leads to increased circulating levels of glucose and lipids in the blood.

In collaboration with Professor Mark C. Horowitz at Yale School of Medicine, U.S. the researchers also investigated genetically modified mice expressing lower levels of the murine variant of the human EBF1-gene. It turned out that these mice developed adipose hypertrophy and displayed increased lipid mobilisation from fat cells. When the mice were put on high-fat diet they became insulin resistant.

"Our findings represent an important step forward in the understanding of how adipose tissue links to the development of metabolic disease," comments Professor Peter Arner, one of the principal investigators at Karolinska Institutet along with Hui Gao, Niklas Mejhert and Mikael Rydén. "This is the first time someone has identified a gene which may cause malfunctioning adipose tissue in (hu)man. In the future, it might be possible to develop drugs that improve EBF1 function in adipose tissue, which could be used to treat type 2-diabetes."


Story Source:

The above story is based on materials provided by Karolinska Institutet. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hui Gao, Niklas Mejhert, Jackie A. Fretz, Erik Arner, Silvia Lorente-Cebrián, Anna Ehrlund, Karin Dahlman-Wright, Xiaowei Gong, Staffan Strömblad, Iyadh Douagi, Jurga Laurencikiene, Ingrid Dahlman, Carsten O. Daub, Mikael Rydén, Mark C. Horowitz, Peter Arner. Early B Cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue. Cell Metabolism, 2014; DOI: 10.1016/j.cmet.2014.03.032

Cite This Page:

Karolinska Institutet. "Gene behind unhealthy adipose tissue identified." ScienceDaily. ScienceDaily, 22 May 2014. <www.sciencedaily.com/releases/2014/05/140522123503.htm>.
Karolinska Institutet. (2014, May 22). Gene behind unhealthy adipose tissue identified. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2014/05/140522123503.htm
Karolinska Institutet. "Gene behind unhealthy adipose tissue identified." ScienceDaily. www.sciencedaily.com/releases/2014/05/140522123503.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) — The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) — Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) — Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins