Featured Research

from universities, journals, and other organizations

Breakthrough study solves plant sex mystery: Genetic hierarchy in plant sperm cell formation undressed

Date:
June 6, 2014
Source:
University of Leicester
Summary:
A team of biologists has solved a mystery surrounding how plants have sex. The researchers have discovered a pair of proteins made by flowering plants that are vital for the production of the sperm present within each pollen grain. Scientists already knew that flowering plants, in contrast to animals, require not one, but two sperm cells for successful fertilization: one to join with the egg cell to produce the embryo and one to join with a second cell to produce the nutrient-rich endosperm inside the seed.

This is an artist's interpretation of the genetic circuit directing the production of twin sperm in each pollen grain -- in which the master control gene DUO1 switches on the DAZ1 and DAZ2 proteins to control cell division to allow twin sperm production to proceed.
Credit: Jerome Twell

A team of biologists from the University of Leicester has solved a mystery surrounding how plants have sex.

Related Articles


The researchers have discovered a pair of proteins made by flowering plants that are vital for the production of the sperm present within each pollen grain.

Scientists already knew that flowering plants, in contrast to animals, require not one, but two sperm cells for successful fertilisation: one to join with the egg cell to produce the embryo and one to join with a second cell to produce the nutrient-rich endosperm inside the seed.

The mystery of this 'double fertilization' process is how each single pollen grain is able to produce twin sperm cells.

This breakthrough study from the Twell Laboratory at the University of Leicester, published in the academic journal The Plant Cell, has found a pair of genes called DAZ1 and DAZ2 that are essential for making twin sperm cells. Plants with mutated versions of DAZ1 and DAZ2 produce pollen grains with a single sperm that is unable to fertilize.

The researchers show that DAZ1 and DAZ2 are controlled by the protein DUO1 that acts as a 'master switch' -- so that DUO1 and the DAZ1/DAZ2 genes work in tandem to control a gene network that ensures a pair of fertile sperm is made inside each pollen grain.

Interestingly, DAZ1 and DAZ2 perform their role by cooperating with a well-known 'repressor' protein called TOPLESS that acts as a brake on unwanted gene activity that would otherwise halt sperm and seed production. Although TOPLESS has many roles in plants it has not previously been linked sperm production.

Professor David Twell at the University of Leicester's Department of Biology, who led the study, said: "We often take for granted sexual reproduction in plants and its role in our lives. It is a complex process that has been studied scientifically for over a century, but it is only recently that we are beginning to get a grip on the underlying mechanisms.

"We hope to use our discovery to decipher the origins of sexual reproduction and to further demystify the fascinating process -- of how plants make the fertile sperm inside the pollen grains -- that are essential for the vast majority of our food crop production."

Given their important role in male fertility, the discovery of DAZ1 and DAZ2 has the potential to be applied in the development of new plant breeding techniques to prevent the unwanted passing of genes -- or 'horizontal gene transfer' -- between crops or from crops to wild species.

This new knowledge also generates genetic tools and new ways of thinking about, and monitoring the effects of, environmental stresses on the reproductive process. In future such information may become increasingly important as we strive to breed superior crops that maintain yield in a changing climate.


Story Source:

The above story is based on materials provided by University of Leicester. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Borg, N. Rutley, S. Kagale, Y. Hamamura, M. Gherghinoiu, S. Kumar, U. Sari, M. A. Esparza-Franco, W. Sakamoto, K. Rozwadowski, T. Higashiyama, D. Twell. An EAR-Dependent Regulatory Module Promotes Male Germ Cell Division and Sperm Fertility in Arabidopsis. The Plant Cell, 2014; DOI: 10.1105/tpc.114.124743

Cite This Page:

University of Leicester. "Breakthrough study solves plant sex mystery: Genetic hierarchy in plant sperm cell formation undressed." ScienceDaily. ScienceDaily, 6 June 2014. <www.sciencedaily.com/releases/2014/06/140606091535.htm>.
University of Leicester. (2014, June 6). Breakthrough study solves plant sex mystery: Genetic hierarchy in plant sperm cell formation undressed. ScienceDaily. Retrieved February 1, 2015 from www.sciencedaily.com/releases/2014/06/140606091535.htm
University of Leicester. "Breakthrough study solves plant sex mystery: Genetic hierarchy in plant sperm cell formation undressed." ScienceDaily. www.sciencedaily.com/releases/2014/06/140606091535.htm (accessed February 1, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, February 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Dog-Loving Astronaut Wins Best Photo of 2015

Dog-Loving Astronaut Wins Best Photo of 2015

Buzz60 (Jan. 30, 2015) Retired astronaut and television host, Leland Melvin, snuck his dogs into the NASA studio so they could be in his official photo. As Mara Montalbano (@maramontalbano) shows us, the secret is out. Video provided by Buzz60
Powered by NewsLook.com
U.S. Wants to Analyze DNA from 1 Million People

U.S. Wants to Analyze DNA from 1 Million People

Reuters - US Online Video (Jan. 30, 2015) The U.S. has proposed analyzing genetic information from more than 1 million American volunteers to learn how genetic variants affect health and disease. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Rarest Cat on Planet Caught Attacking Monkeys on Camera

Rarest Cat on Planet Caught Attacking Monkeys on Camera

Buzz60 (Jan. 30, 2015) An African Golden Cat, the rarest large cat on the planet was recently caught on camera by scientists trying to study monkeys. The cat comes out of nowhere to attack those monkeys. Patrick Jones (@Patrick_E_Jones) has the rest. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins