Featured Research

from universities, journals, and other organizations

Scientists predict fermionic matter in a previously unknown state

Date:
June 17, 2014
Source:
Moscow Institute of Physics and Technology
Summary:
Scientists have presented theoretical calculations which indicate the possible existence of fermionic matter in a previously unknown state -- in the form of a one-dimensional liquid, which cannot be described within the framework of existing models.

A researcher with the Department of Electrodynamics of Complex Systems and Nanophotonics, Alexander Rozhkov, has presented theoretical calculations which indicate the possible existence of fermionic matter in a previously unknown state -- in the form of a one-dimensional liquid, which cannot be described within the framework of existing models.

Rozhkov explained that the one-dimensional liquid state of matter is not necessarily one that can be observed with the naked eye on a macroscopic scale. The term "liquid" should be understood broadly, he said; it applies to models describing multi-particle systems with inter-particle interaction. Such models can be described as quite ordinary objects such as electrons in conductors and more sophisticated objects,such as nanotubes, nanowires or graphene sheets.

"Currently there are two general models of fermionic matter, namely fermionic liquid (for three- and two-dimensional spaces) and Tomonaga-Luttinger liquid (for one-dimensional space)," Rozhkov said. "I showed that it is possible to produce yet another state of one-dimensional matter adjusting certain interactions. This state is similar to both of these models, but cannot be reduced to either. I suggested calling it aquasi-fermionic liquid."

As follows from the proposed name, the newly found matter consists of fermions, which are particles with half-integer spin. (Spin is the quantum characteristic of a particle, while half-integer is an integer plus one-half.) According to the laws of quantum mechanics, the behavior of substances consisting of fermions differs from that of matter consisting of bosons, which are particles with integer spin.

The difference between Bose and fermionic liquids can be illustrated with the example of liquid helium: the atom of a helium-4 isotope has a Bose nucleus, and forms of Bose liquid that undergoes Bose condensation at temperatures below 2.17 Kelvin. A Bose-condensed liquid exhibits superfluidity, for example, it can flow through any crack without meeting any resistance. Helium-3 has a fermion nucleus, and therefore forms afermionic liquid. To turn helium-3 into a superfluid one needs to cool it to 0.0025 Kelvin.

Rozhkov also noted that at low temperatures and in high magnetic fields, fermions begin to behave as if they had no spin, which simplifies their modeling, allowing a researcher to maintain sufficient accuracy.

Preliminary estimates show that the new one-dimensional liquid statecan be obtained using atoms cooled to very low temperatures in magnetic traps. However, it is still too early to consider the practical application of such a system, according to Rozhkov.

"In almost any contemporary paper, both theoretical and experimental, researchers describe the practical application of their discovery, but at this stage I would not hope too much for any practical application," Rozhkov said. "I found an exotic mutant different from anything currently known. And whether this can be applied in practice remains to be seen. At this moment I don't think so," said Rozhkov.

Rozhkov added that the group of researchers he works with is also looking into other low-dimensional and multi-particle systems. For example, new results were recently obtained on the possible anti-ferromagnetism in two-layer graphene-AA, and a new description for quantum dots of superconducting material was drafted.


Story Source:

The above story is based on materials provided by Moscow Institute of Physics and Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. V. Rozhkov. One-Dimensional Fermions with neither Luttinger-Liquid nor Fermi-Liquid Behavior. Physical Review Letters, 2014; 112 (10) DOI: 10.1103/PhysRevLett.112.106403

Cite This Page:

Moscow Institute of Physics and Technology. "Scientists predict fermionic matter in a previously unknown state." ScienceDaily. ScienceDaily, 17 June 2014. <www.sciencedaily.com/releases/2014/06/140617112010.htm>.
Moscow Institute of Physics and Technology. (2014, June 17). Scientists predict fermionic matter in a previously unknown state. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2014/06/140617112010.htm
Moscow Institute of Physics and Technology. "Scientists predict fermionic matter in a previously unknown state." ScienceDaily. www.sciencedaily.com/releases/2014/06/140617112010.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins