Featured Research

from universities, journals, and other organizations

New type of dust discovered in Martian atmosphere

Date:
June 23, 2014
Source:
Moscow Institute of Physics and Technology
Summary:
Scientists have discovered a new peculiarity of the Martian atmosphere. The scientists had analyzed satellite-acquired data and concluded that the dust particles in the planet's atmosphere can be of two types.

Artist's rendering shows the Mars Express spacecraft orbiting the Red Planet.
Credit: NASA/JPL

A group of French and Russian scientists, including three MIPT specialists, has discovered a new peculiarity of the Martian atmosphere. The scientists had analyzed satellite-acquired data and concluded that the dust particles in the planet's atmosphere can be of two types.

The scientific article which presents the results of the research in detail has been published in the magazine Icarus.

The Russian contributors to the research, Anna Fedorova, Alexander Rodin and Oleg Korablev, are the specialists of MIPT and SRI (IKI) RAS. These scientists and their French colleagues from the Paris Observatory and LATMOS research laboratory have carried out a simultaneous analysis of the ultraviolet and infrared atmospheric extinctions from SPICAM, the spectrometer on the board of the orbital station Mars Express.

The results were received during the solar occultations at the beginning of Northern summer on Mars. Before the Sun is completely eclipsed by the planetary disk, its rays pierce through the atmosphere and then get "caught" by the spectrometer's detector. Having gone through the atmosphere, the solar rays show a different spectrum with the changes hinting at the atmosphere's makeup, the amount of various aerosols and the size of their particles. This method was applied in order to understand the way the particles are distributed in the atmosphere.

The researchers have found out that the dust particles in the Martian atmosphere are not homogeneous, but can be roughly grouped into two modes. The first -- coarser -- mode is represented by both H2O ice grains with the average radius of 1.2 μm, and slightly smaller dust particles (R = 0.7 μm).

The second mode is a lot finer, it is an aerosol which consists of much smaller particles with a radius of 0.04-0.07 μm.

Interestingly, the density number of the both modes is not that high. Even in the most "dusty" layers of the planet's atmosphere at altitudes of 20-30 km there are about 3.000 particles of the finer mode per 1 cm³, and not more than 2 particles of the coarser mode per 1 cm³.

If compared with what is considered the norm on Earth, the air with such dust density is rather clean (rooms are usually a lot dustier); yet, aerosols are important because they, according to the scientists, play a key role in forming the planet's climate.

Because of fine dust particles in the higher layers of the atmosphere, ice "embryos" are formed faster, which, in turn, influences clouds' build-up. The clouds are responsible for both precipitation and temperature condition on the planet's surface. Analyzing the way the dust is spread in the atmosphere of the planet with regard to the altitude and geographical coordinates is crucial for forming the full picture of what is happening on Mars.

Besides that, the dust modes which the scientists have discovered confirm that Martian dust storms ("dust devils") are able to lift large quantities of substance from the planet's surface.

The researchers point out that the fact of fine dust presence in the atmosphere can contradict the previously obtained data on the existence of the supersaturated steam at the same altitude.

With the extraneous particles present it would have been natural for the supersaturated steam to get further condensed and form clouds. The key to the solution of this contradiction is, presumably, that there are very low temperatures of about -- 110 degrees Celsius. At such low temperatures the growth of ice grains slows down substantially.

Studying the clouds' build-up in the higher layers of the atmosphere is important not only to understand what is typical for Mars, but also to know more of Earth, because similar processes can be here occurring as well.


Story Source:

The above story is based on materials provided by Moscow Institute of Physics and Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. A.A. Fedorova, F. Montmessin, A.V. Rodin, O.I. Korablev, A. Mδδttδnen, L. Maltagliati, J.-L. Bertaux. Evidence for a bimodal size distribution for the suspended aerosol particles on Mars. Icarus, 2014; 231: 239 DOI: 10.1016/j.icarus.2013.12.015

Cite This Page:

Moscow Institute of Physics and Technology. "New type of dust discovered in Martian atmosphere." ScienceDaily. ScienceDaily, 23 June 2014. <www.sciencedaily.com/releases/2014/06/140623104253.htm>.
Moscow Institute of Physics and Technology. (2014, June 23). New type of dust discovered in Martian atmosphere. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2014/06/140623104253.htm
Moscow Institute of Physics and Technology. "New type of dust discovered in Martian atmosphere." ScienceDaily. www.sciencedaily.com/releases/2014/06/140623104253.htm (accessed August 30, 2014).

Share This




More Space & Time News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) — Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) — The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) — Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) — Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins