Featured Research

from universities, journals, and other organizations

Agile aperture antenna tested on aircraft to survey ground emitters, maintain satellite connection

Date:
July 10, 2014
Source:
Georgia Institute of Technology
Summary:
A software-defined, electronically-reconfigurable Agile Aperture Antenna has now been tested on the land, sea and air. Two of the low-power devices, which can change beam directions in a thousandth of a second, were demonstrated in an aircraft during recent flight tests. One device, looking up, maintained a satellite data connection as the aircraft changed headings, banked and rolled, while the other antenna looked down to track electromagnetic emitters on the ground.

An Agile Aperture Antenna is placed in a window of an aircraft for a recent test flight. The software-defined, electronically-reconfigurable antenna can change beam directions in a thousandth of a second. Its light weight and low power requirements make it ideal for use in UAVs.
Credit: GTRI Photo

The Georgia Tech Research Institute's software-defined, electronically-reconfigurable Agile Aperture Antenna (A3) has now been tested on the land, sea and air.

Department of Defense representatives were in attendance during a recent event where two of the low-power devices, which can change beam directions in a thousandth of a second, were demonstrated in an aircraft during flight tests held in Virginia during February 2014. One device, looking up, maintained a satellite data connection as the aircraft changed headings, banked and rolled, while the other antenna looked down to track electromagnetic emitters on the ground.

"We were able to sustain communication with the commercial satellite in flight as the aircraft changed headings dramatically," explained Matthew Habib, a GTRI research engineer. "The antenna was changing beam directions to compensate for the aircraft headings. At the same time, we were maintaining communication with a device on the ground."

In addition to rapidly altering its beam direction, the antenna's frequency and polarization can also be changed by switching active components. The prototype used in this test operates from 500 to 3000 MHz with a plus or minus 60-degree hemispherical view. The latest prototypes have been able to provide gain to 6 GHz, opening more communication options to the end user. For the flight test, GTRI collaborated with SR Technologies, Inc. (SRT), a Florida company specializing in wireless engineering products. SRT provides mobile communications hardware including L-Band mobile satellite, 802.11 (WiFi), and cellular solutions.

For this effort, the A3 was matched with an SRT software defined radio focused on the L-Band mobile satellite frequency range. GTRI also collaborated with Aurora Flight Sciences to fly the antennas on their Centaur optionally piloted aircraft.

Beyond its ability to be easily reconfigured, the low power consumption and flat form make the Agile Aperture Antenna ideal for aircraft such as UAVs that have small power supplies and limited surface area for integrating antennas.

"If you have a large ship or aircraft with lots of power, you can afford to use a phased-array or other type of steerable antenna," noted Habib. "But when you are using small vehicles, especially robotic aircraft and self-sustaining vehicles that don't include an operator, our antenna is a great solution."

Composed of printed circuit boards, the antenna components weigh just two or three pounds.

"It's not just about the low power and weight," said James Strates, also a GTRI research engineer. "The simplicity of the system, the low fabrication cost and the ability to retrofit the A3 to an existing system also make it attractive to operators."

Beyond use on aircraft, ships and ground vehicles, the antenna concept could also find application in mobile devices, where the dynamic tunability could help cut through congestion on cellular networks, noted Ryan Westafer, a GTRI research engineer.

"A small electronically tunable antenna could provide a lot of new opportunities for mobile devices," he said.

As configured for the flight tests, the upward-looking A3 antenna had a beam 30 degrees wide that could be shifted up to 60 degrees in either direction to maintain contact with the satellite. For the downward-looking antenna, the beam was automatically adjusted to "stare" at a point on the ground, reducing the interference from nearby emitters, Westafer explained.

Because it doesn't require mechanically moving a metal dish, the A3 can change beam direction 120 degrees in a thousandth of a second, which gives it a significant response time advantage over gimbaled antennas.

The A3's weight and complexity are also much less than for a phased-array antenna with similar capabilities. The A3 antenna uses just one static feed point, while a phased-array must feed and control each element separately. Because of its low power consumption, the A3 requires no cooling system.

The Agile Aperture Antenna has also been tested on a Wave Glider autonomous ocean vehicle. Together with previous testing on a moving ground vehicle, the new evaluations demonstrate the operational flexibility of the antenna, Habib said. So far, the A3 has operated successfully at temperatures as low as 10 degrees below zero Fahrenheit, and as high as 100 degrees Fahrenheit.

To track the satellite, the antenna uses an inertial measurement unit to provide information about the aircraft's pitch, roll and yaw -- as well as its longitude, latitude and altitude. That information is sent to a controller that turns elements off and on to the change the beam direction to maintain communication. Before takeoff, the researchers had programmed into the device the location of the commercial satellite with which it was communicating.

The challenge ahead is to take advantage of the antenna's unique capabilities -- and to affect the way operators place antennas onto ground, air and sea vehicles.

"This is changing the way that we think about integrating antennas onto systems to provide new solutions," Habib said. "Users have not had these capabilities before, and we are excited to see how our partners will be able to take full advantage of this antenna."


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. The original article was written by John Toon. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology. "Agile aperture antenna tested on aircraft to survey ground emitters, maintain satellite connection." ScienceDaily. ScienceDaily, 10 July 2014. <www.sciencedaily.com/releases/2014/07/140710111525.htm>.
Georgia Institute of Technology. (2014, July 10). Agile aperture antenna tested on aircraft to survey ground emitters, maintain satellite connection. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2014/07/140710111525.htm
Georgia Institute of Technology. "Agile aperture antenna tested on aircraft to survey ground emitters, maintain satellite connection." ScienceDaily. www.sciencedaily.com/releases/2014/07/140710111525.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins