New! Sign up for our free email newsletter.
Science News
from research organizations

Running for life: How speed restricts evolutionary change of the vertebral column

Date:
July 14, 2014
Source:
Naturalis Biodiversity Center
Summary:
One of the riddles of mammal evolution is explained: the conservation of the number of trunk vertebrae. Dutch and American researchers have shown that this conservation is due to the role of speed in survival of fast running mammals. They measured variation of 774 skeletons of fast and slow species. The researchers found that a combination of developmental and biomechanical problems prevents evolutionary change in the number of trunk vertebrae in fast, but not in slow mammals.
Share:
FULL STORY

One of the riddles of mammal evolution explained: the strong conservation of the number of trunk vertebrae. Researchers of the Naturalis Biodiversity Center and the University of Utah show that this conservation is probably due to the essential role of speed and agility in survival of fast running mammals. They measured variation in vertebrae of 774 individual mammal skeletons of both fast and slow running species. The researchers found that a combination of developmental and biomechanical problems prevents evolutionary change in the number of trunk vertebrae in fast running and agile mammals. In contrast, these problems barely affect slow and sturdy mammals.

The study will appear on 14 July 2014 in PNAS.

The mammal vertebral column is highly variable among species, reflecting adaptations to a wide range of lifestyles, from burrowing in moles to flying in bats. Yet, as a rule, the number of trunk vertebrae varies little between most mammal species. The vertebral column and its high evolutionary potential is considered to be of central importance for the evolution of vertebrates, which is why the constancy is both puzzling and important. The authors propose, on biomechanical and developmental grounds that evolutionary change is virtually impossible in fast running and agile mammals, but only marginally affects slow and sturdy mammals. The rationale is that several mutations are necessary to change the number of trunk vertebrae, with single mutations leading to irregularly shaped transitional lumbosacral vertebrae that are incompletely and asymmetrically fused to the sacrum. These irregular lumbosacral joints reduce flexibility, thus severely hampering running and jumping. Their observations indeed show that selection against these initial changes is strong in fast and agile mammals and weak in slower and sturdier ones.

In total, 774 skeletons of 90 different species were analysed. The skeletons belonged to collections of 9 European natural history museums including Naturalis Biodiversity Center, Leiden.

"The stiffness of the back of a mammal is key to whether evolutionary change is possible or not," said Frietson Galis, one of the authors of the study. "`the locomotion of slow mammals with a stiff back is only marginally affected by irregular lumbosacral joints, but for fast running mammals such joints are fatal " continued Clara ten Broek another author of the study.

"A combination of developmental, biomechanical and evolutionary insights and a large dataset were necessary to solve this puzzle of mammal evolution," said Frietson Galis.

"The stiffness of the back of a mammal is key to whether evolutionary change is possible or not," said Frietson Galis, researcher at Naturalis Biodiversity Center and one of the authors of the study. "the locomotion of slow mammals with a stiff back is only marginally affected by irregular lumbosacral joints, but for fast running mammals such joints are fatal" continued Clara ten Broek another author of the study.

"A combination of developmental, biomechanical and evolutionary insights and a large dataset were necessary to solve this puzzle of mammal evolution," said Frietson Galis.


Story Source:

Materials provided by Naturalis Biodiversity Center. Note: Content may be edited for style and length.


Journal Reference:

  1. Frietson Galis, David R. Carrier, Joris van Alphen, Steven D. van der Mije, Tom J.M. Van Dooren, Johan A. J. Metz, Clara M.A. ten Broek. Fast running restricts evolutionary change of the vertebral column in mammals. PNAS, 2014 DOI: 10.1073/pnas.1401392111

Cite This Page:

Naturalis Biodiversity Center. "Running for life: How speed restricts evolutionary change of the vertebral column." ScienceDaily. ScienceDaily, 14 July 2014. <www.sciencedaily.com/releases/2014/07/140714152427.htm>.
Naturalis Biodiversity Center. (2014, July 14). Running for life: How speed restricts evolutionary change of the vertebral column. ScienceDaily. Retrieved April 17, 2024 from www.sciencedaily.com/releases/2014/07/140714152427.htm
Naturalis Biodiversity Center. "Running for life: How speed restricts evolutionary change of the vertebral column." ScienceDaily. www.sciencedaily.com/releases/2014/07/140714152427.htm (accessed April 17, 2024).

Explore More

from ScienceDaily

RELATED STORIES