Featured Research

from universities, journals, and other organizations

How the brain stabilizes connections in order to learn better

Date:
July 17, 2014
Source:
Université de Genève
Summary:
Throughout our lives, our brains adapt to what we learn and memorize. The brain is indeed made up of complex networks of neurons and synapses that are constantly re-configured. However, in order for learning to leave a trace, connections must be stabilized. A team researchers has now discovered a new cellular mechanism to help understand this.

Throughout our lives, our brains adapt to what we learn and memorize. The brain is indeed made up of complex networks of neurons and synapses that are constantly re-configured. However, in order for learning to leave a trace, connections must be stabilized. A team at the University of Geneva (UNIGE) discovered a new cellular mechanism involved in the long-term stabilization of neuron connections, in which non-neuronal cells, called astrocytes, play a role unidentified until now. These results, published in Current Biology, will lead to a better understanding of neurodegenerative and neurodevelopmental diseases.

Related Articles


The central nervous system excitatory synapses -- points of contact between neurons that allow them to transmit signals -- are highly dynamic structures, which are continuously forming and dissolving. They are surrounded by non-neuronal cells, or glial cells, which include the distinctively star-shaped astrocytes. These cells form complex structures around synapses, and play a role in the transmission of cerebral information which was widely unknown before.

Plasticity and Stability

By increasing neuronal activity through whiskers stimulation of adult mice, the scientists were able to observe, in both the somatosensory cortex and the hippocampus, that this increased neuronal activity provokes an increase in astrocytes movements around synapses. The synapses, surrounded by astrocytes, re-organise their architecture, which protects them and increases their longevity. The team of researchers led by Dominique Muller, Professor in the Department of Fundamental Neuroscience of the Faculty of Medicine at UNIGE, developed new techniques that allowed them to specifically "control" the different synaptic structures, and to show that the phenomenon took place exclusively in the connections between neurons involved in learning. "In summary, the more the astrocytes surround the synapses, the longer the synapses last, thus allowing learning to leave a mark on memory," explained Yann Bernardinelli, the lead author on this study.

This study identifies a new, two-way interaction between neurons and astrocytes, in which the learning process regulates the structural plasticity of astrocytes, who in turn determine the fate of the synapses. This mechanism indicates that astrocytes apparently play an important role in the processes of learning and memory, which present abnormally in various neurodegenerative and neurodevelopmental diseases, among which Alzheimer's, autism, or Fragile X syndrome.

This discovery highlights the until now underestimated importance of cells which, despite being non-neuronal, participate in a crucial way in the cerebral mechanisms that allow us to learn and retain memories of what we have learned.


Story Source:

The above story is based on materials provided by Université de Genève. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yann Bernardinelli, Jerome Randall, Elia Janett, Irina Nikonenko, Stéphane König, Emma Victoria Jones, Carmen E. Flores, Keith K. Murai, Christian G. Bochet, Anthony Holtmaat, Dominique Muller. Activity-Dependent Structural Plasticity of Perisynaptic Astrocytic Domains Promotes Excitatory Synapse Stability. Current Biology, 2014; DOI: 10.1016/j.cub.2014.06.025

Cite This Page:

Université de Genève. "How the brain stabilizes connections in order to learn better." ScienceDaily. ScienceDaily, 17 July 2014. <www.sciencedaily.com/releases/2014/07/140717125047.htm>.
Université de Genève. (2014, July 17). How the brain stabilizes connections in order to learn better. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2014/07/140717125047.htm
Université de Genève. "How the brain stabilizes connections in order to learn better." ScienceDaily. www.sciencedaily.com/releases/2014/07/140717125047.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) — A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) — Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) — Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins