Featured Research

from universities, journals, and other organizations

Chromosome-based draft of the wheat genome completed

Date:
July 17, 2014
Source:
Kansas State University
Summary:
Scientists have completed a chromosome-based draft sequence of the bread wheat genome as well as the first reference sequence of chromosome 3B, the largest chromosome in wheat.

Wheat is grown on more than 531 million acres around the world and produces nearly 700 million tons of food and feed each year. Scientists are working to create a full genetic map of the plant in order to improve its resistance to diseases and drought as well as improve its food yield.
Credit: Kansas State University Photo Services

Several Kansas State University researchers were essential in helping scientists assemble a draft of a genetic blueprint of bread wheat, also known as common wheat. The food plant is grown on more than 531 million acres around the world and produces nearly 700 million tons of food each year.

Related Articles


The International Wheat Genome Sequencing Consortium, which also includes faculty at Kansas State University, recently published a chromosome-based draft sequence of wheat's genetic code, which is called a genome. "A chromosome-based draft sequence of the hexaploid bread wheat genome" is one of four papers about the wheat genome that appear in the journal Science.

The genetic blueprint is an invaluable resource to plant science researchers and breeders, said Eduard Akhunov, associate professor of plant pathology and a collaborator with the International Wheat Genome Sequencing Consortium.

"For the first time, they have at their disposal a set of tools enabling them to rapidly locate specific genes on individual wheat chromosomes throughout the genome," Akhunov said. "This resource is invaluable for identifying those genes that control complex traits, such as yield, grain quality, disease, pest resistance and abiotic stress tolerance. They will be able to produce a new generation of wheat varieties with higher yields and improved sustainability to meet the demands of a growing world population in a changing environment."

Although a draft, the sequence provides new insight into the plant's structure, organization, evolution and genetic complexity.

"This is a very significant advancement for wheat genetics and breeding community," Akhunov said. "The wheat genome sequence provides a foundation for studying genetic variation and understanding how changes in the genetic code can impact important agronomic traits. In our lab we use this sequence to create a catalog of single base changes in DNA sequence of a worldwide sample of wheat lines to get insights into the evolution and origin of wheat genetic diversity."

Akhunov, Shichen Wang, a programmer and bioinformatics scientist in plant pathology, and Jesse Poland, assistant professor of plant pathology, collaborated with the International Wheat Genome Sequencing Consortium to order genes along the wheat chromosomes.

Other Kansas State University researchers in the department of plant pathology involved include Bikram Gill, university distinguished professor and director of the Wheat Genetics Resource Center, and Bernd Friebe, research professor, who developed genetic material that was essential for obtaining the chromosome-based sequence of the wheat genome.

A second paper in Science details the first reference sequence of chromosome 3B, the largest chromosome in common wheat.

"The wheat genome only has 21 chromosomes, but each chromosome is very big and therefore quite complicated," Akhunov said. "The largest chromosome, 3B, has nearly 800 million letters in its genetic code. This is nearly three times more information than is in the entire rice genome. So trying to sequence this chromosome -- and this genome -- end-to-end is an extremely complicated task."

In order to analyze the vast amount of genetic information, researchers used a technique called shotgun sequencing. This divided the wheat genome into chromosomes and then split each chromosome into smaller segments. Chromosomal segments were analyzed by short gene sequences and overlapping sequences were stitched together with computer software.

The chromosome-based daft sequence the critical step before the full wheat genome is sequenced, Akhunov said. The sequencing approach developed for the 3B chromosome can now be applied for sequencing the remaining chromosomes in wheat. The consortium estimates the full genome sequence will be available in three years.

The research is funded by the U.S. Department of Agriculture's National Institute of Food and Agriculture.

"Wheat is a staple source of food for the majority of the world. As the global population continues to rapidly increase, we will need all the tools available to continue producing enough food for all people in light of a changing climate, diminishing land and water resources and changing diets and health expectations," said Sonny Ramaswamy, director of USDA's National Institute of Food and Agriculture and a former Kansas State University faculty member. "This work will give a boost to researchers looking to identify ways to increase wheat yields."


Story Source:

The above story is based on materials provided by Kansas State University. The original article was written by Greg Tammen. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. F. X. Mayer, J. Rogers, J. Doleel, C. Pozniak, K. Eversole, C. Feuillet, B. Gill, B. Friebe, A. J. Lukaszewski, P. Sourdille, T. R. Endo, M. Kubalakova, J. Ihalikova, Z. Dubska, J. Vrana, R. perkova, H. imkova, M. Febrer, L. Clissold, K. McLay, K. Singh, P. Chhuneja, N. K. Singh, J. Khurana, E. Akhunov, F. Choulet, A. Alberti, V. Barbe, P. Wincker, H. Kanamori, F. Kobayashi, T. Itoh, T. Matsumoto, H. Sakai, T. Tanaka, J. Wu, Y. Ogihara, H. Handa, P. R. Maclachlan, A. Sharpe, D. Klassen, D. Edwards, J. Batley, O.-A. Olsen, S. R. Sandve, S. Lien, B. Steuernagel, B. Wulff, M. Caccamo, S. Ayling, R. H. Ramirez-Gonzalez, B. J. Clavijo, J. Wright, M. Pfeifer, M. Spannagl, M. M. Martis, M. Mascher, J. Chapman, J. A. Poland, U. Scholz, K. Barry, R. Waugh, D. S. Rokhsar, G. J. Muehlbauer, N. Stein, H. Gundlach, M. Zytnicki, V. Jamilloux, H. Quesneville, T. Wicker, P. Faccioli, M. Colaiacovo, A. M. Stanca, H. Budak, L. Cattivelli, N. Glover, L. Pingault, E. Paux, S. Sharma, R. Appels, M. Bellgard, B. Chapman, T. Nussbaumer, K. C. Bader, H. Rimbert, S. Wang, R. Knox, A. Kilian, M. Alaux, F. Alfama, L. Couderc, N. Guilhot, C. Viseux, M. Loaec, B. Keller, S. Praud. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014; 345 (6194): 1251788 DOI: 10.1126/science.1251788

Cite This Page:

Kansas State University. "Chromosome-based draft of the wheat genome completed." ScienceDaily. ScienceDaily, 17 July 2014. <www.sciencedaily.com/releases/2014/07/140717141849.htm>.
Kansas State University. (2014, July 17). Chromosome-based draft of the wheat genome completed. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2014/07/140717141849.htm
Kansas State University. "Chromosome-based draft of the wheat genome completed." ScienceDaily. www.sciencedaily.com/releases/2014/07/140717141849.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Brawling Pandas Are Violently Adorable

Brawling Pandas Are Violently Adorable

Buzz60 (Jan. 29, 2015) Video of pandas play fighting at the Chengdu Research Base in China will make your day. Mara Montalbano (@maramontalbano) shows us. Video provided by Buzz60
Powered by NewsLook.com
Why Researchers Say We Should Cut Back On Biofuels

Why Researchers Say We Should Cut Back On Biofuels

Newsy (Jan. 29, 2015) Biofuels aren&apos;t the best alternative to fossil fuels, according to a new report. In fact, they&apos;re quite a bad one. Video provided by Newsy
Powered by NewsLook.com
3-D Printed Wheelchair Helps Two-Legged Dog Learn to Run

3-D Printed Wheelchair Helps Two-Legged Dog Learn to Run

Buzz60 (Jan. 29, 2015) 3-D printing helps another two-legged dog run around with his four-legged friends. Jen Markham (@jenmarkham) has the adorable video. Video provided by Buzz60
Powered by NewsLook.com
Dogs Bring on So Many Different Emotions in Their Human Best Friends

Dogs Bring on So Many Different Emotions in Their Human Best Friends

RightThisMinute (Jan. 28, 2015) From new-puppy happy tears to helpful-grocery-carrying-dog laughter, our four-legged best friends can make us feel the entire spectrum of emotions. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins