Featured Research

from universities, journals, and other organizations

Fundamental plant chemicals trace back to bacteria

Date:
August 7, 2014
Source:
University of Wisconsin-Madison
Summary:
A fundamental chemical pathway that all plants use to create an essential amino acid needed by all animals to make proteins has now been traced to two groups of ancient bacteria. Researchers describe in a new article how they traced the phenylalanine pathway to two groups of bacteria. "Our question was how plants can produce so many different kinds and amounts of these aromatics, particularly the phenylalanine-derived compounds," they explain.

Hiroshi Maeda’s research sheds new light on the bacteria that makes lignin, a compound that gives wood — such as the maple trees in this forest near Minocqua, Wisconsin — its strength.
Credit: Bryce Richter

A fundamental chemical pathway that all plants use to create an essential amino acid needed by all animals to make proteins has now been traced to two groups of ancient bacteria. The pathway is also known for making hundreds of chemicals, including a compound that makes wood strong and the pigments that make red wine red.

"We have been trying to unravel the source of the phenylalanine amino acid for some time," says Hiroshi Maeda, an assistant professor of botany at the University of Wisconsin-Madison. "Plants use this pathway to make natural products that are vital to plants and also to our food, medicine, fiber and fuel. One of the most important is lignin, found in the plant cell wall, which allows trees to stand tall and transport water."

Other scientists have traced plant metabolic pathways to fungi, "which are pretty close to plants in terms of evolution," Maeda says. "But in this case, the source is bacteria, which are more distant relatives."

In a study recently published in the online journal The Plant Cell, Maeda and his colleagues described how they traced the phenylalanine pathway to two groups of bacteria. "Our question was how plants can produce so many different kinds and amounts of these aromatics, particularly the phenylalanine-derived compounds," Maeda says.

During the study, Maeda and his colleagues, including John Jelesko of the Virginia Polytechnic Institute, compared the genetic sequence for the plant phenylalanine pathway enzymes to a genetic database covering numerous organisms. "We asked the computer to fish out similar sequences, and we got thousands of sequences," Maeda says. "We took the closer sequences and did phylogenetic analysis. Essentially we were asking, 'Who is your closest sibling?'"

They found that the plant sequence was most similar to a class of bacteria called Chlorobi and Bacteroidetes. "This was surprising because when people do a similar analysis for other plant genes, they usually find the closest sequence in fungi, or in cyanobacteria whose ancestor came into plants and now make plants green and photosynthetic. Our results did not fit what people expected."

During follow-up experiments, the researchers arranged the protein sequences from other organisms according to how closely they resembled the plant sequence, and identified two amino acid sites that are crucial for phenylalanine production.

Because the phenylalanine pathway is critical to the production of so many valuable plant products, Maeda says the study may eventually have practical benefits. "We hope this might help increase production of nutrients and medicinal compounds."

In terms of basic science, he adds, "Our study provides examples of the complex evolution of plant chemical pathways." During evolution, the need to survive and reproduce forces organisms to continue adapting to their circumstances, he notes. "Plants have had multiple opportunities to adopt different genes (and enzymes) during evolution to meet the challenges of the environment.

"The enzyme that plants adopted from the ancient bacteria was helpful to them when they acquired it, and plants ended up maintaining it, rather than other types from fungi or cyanobacteria. This enzyme and its pathway are now seen across the plant kingdom and allow plants to make such a large variety and quantity of phenolic compounds."


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. The original article was written by David Tenenbaum. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. Dornfeld, A. J. Weisberg, R. K C, N. Dudareva, J. G. Jelesko, H. A. Maeda. Phylobiochemical Characterization of Class-Ib Aspartate/Prephenate Aminotransferases Reveals Evolution of the Plant Arogenate Phenylalanine Pathway. The Plant Cell, 2014; DOI: 10.1105/tpc.114.127407

Cite This Page:

University of Wisconsin-Madison. "Fundamental plant chemicals trace back to bacteria." ScienceDaily. ScienceDaily, 7 August 2014. <www.sciencedaily.com/releases/2014/08/140807121848.htm>.
University of Wisconsin-Madison. (2014, August 7). Fundamental plant chemicals trace back to bacteria. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2014/08/140807121848.htm
University of Wisconsin-Madison. "Fundamental plant chemicals trace back to bacteria." ScienceDaily. www.sciencedaily.com/releases/2014/08/140807121848.htm (accessed September 17, 2014).

Share This



More Plants & Animals News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins