Featured Research

from universities, journals, and other organizations

Search for biomarkers aimed at improving treatment of painful bladder condition

Date:
August 11, 2014
Source:
Wake Forest Baptist Medical Center
Summary:
Taking advantage of technology that can analyze tissue samples and measure the activity of thousands of genes at once, scientists are on a mission to better understand and treat interstitial cystitis (IC), a painful and difficult-to-diagnose bladder condition. IC is also known as bladder pain syndrome. Symptoms can include severe pelvic pain, urinary urgency and frequency and painful sexual intercourse. IC is often misdiagnosed as other conditions such as endometriosis, kidney stones or chronic urinary tract infections.

Taking advantage of technology that can analyze tissue samples and measure the activity of thousands of genes at once, scientists at Wake Forest Baptist Medical Center are on a mission to better understand and treat interstitial cystitis (IC), a painful and difficult-to-diagnose bladder condition.

Related Articles


"We are looking for molecular biomarkers for IC, which basically means we are comparing bladder biopsy tissue from patients with suspected interstitial cystitis to patients without the disease. The goal is to identify factors that will lead to a more definitive diagnosis, and then use this information to tailor treatments to the patient," said senior author Stephen J. Walker, Ph.D., associate professor at Wake Forest Baptist's Institute for Regenerative Medicine.

The team's initial work, published online ahead of print in the Journal of Urology, found that tissue from IC patients with low bladder capacity had a significantly different gene expression profile than both IC patients with normal bladder capacity and study participants without IC. The findings suggest there may be a sub-type of IC.

"This is the first study to document functional genomic variation based solely on bladder capacity," said Robert J. Evans, M.D., a co-author and IC specialist in Wake Forest Baptist Urology. "Interstitial cystitis is notoriously difficult to diagnose. In fact, one report found that it takes the average patient eight years and seeing five doctors to be correctly diagnosed. The identification of biomarkers to improve diagnosis or treatment would be a significant breakthrough for patients and physicians."

IC, also known as bladder pain syndrome, is a condition in which the bladder lining is tender and easily irritated. Symptoms can include severe pelvic pain, urinary urgency and frequency and painful sexual intercourse. IC is often misdiagnosed as other conditions such as endometriosis, kidney stones or chronic urinary tract infections. The condition affects an estimated three to eight million women and one to four million men in the United States.

For the study, researchers analyzed bladder biopsies from 13 patients diagnosed with IC and three patients without the condition. The biopsies were sorted into three groups: low bladder capacity (less than 13 fluid ounces as tested under anesthesia); bladder capacity above 13 ounces; and non-IC patients. Using microarray analysis, which allows gene expression profiling on a "whole genome" scale, the researchers looked for similarities and differences in gene expression between groups. The analysis tells researchers which genes are turned "on" and which are turned "off."

The results showed a highly significant difference between low capacity patients and both the normal capacity and control patients. The low capacity patients had genes related to inflammation and immune signaling turned "on." The results may reflect a fundamental difference in disease processes.

"These gene expression differences may explain why clinical trials for IC are so variable in effectiveness and have a large number of non-responders," said Evans. "There may be subtypes of the disease that respond best to particular treatments."

Based on these early results, the team is conducting further research with the aim of identifying and validating a biomarker to aid in diagnosis and treatment of IC.

"Diseases are rarely seen as single entities anymore," said Walker. "Patients demonstrating a specific disease subtype may respond more quickly and or more favorably to treatments that target that specific subtype. Having the ability to identify the right treatment for the right patient is the ultimate goal."


Story Source:

The above story is based on materials provided by Wake Forest Baptist Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Wake Forest Baptist Medical Center. "Search for biomarkers aimed at improving treatment of painful bladder condition." ScienceDaily. ScienceDaily, 11 August 2014. <www.sciencedaily.com/releases/2014/08/140811151422.htm>.
Wake Forest Baptist Medical Center. (2014, August 11). Search for biomarkers aimed at improving treatment of painful bladder condition. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2014/08/140811151422.htm
Wake Forest Baptist Medical Center. "Search for biomarkers aimed at improving treatment of painful bladder condition." ScienceDaily. www.sciencedaily.com/releases/2014/08/140811151422.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins