Featured Research

from universities, journals, and other organizations

Natural methane seepage on U.S. Atlantic ocean margin widespread

Date:
August 25, 2014
Source:
U.S. Geological Survey
Summary:
Natural methane leakage from the seafloor is far more widespread on the U.S. Atlantic margin than previously thought, according to a study by researchers from Mississippi State University, the U.S. Geological Survey, and other institutions.

Map of the northern U.S. Atlantic margin showing the locations of newly-discovered methane seeps mapped by researchers from Mississippi State University, the U.S. Geological Survey, and other partners. None of the seeps shown here was known to researchers before 2012.
Credit: Image courtesy of U.S. Geological Survey

Natural methane leakage from the seafloor is far more widespread on the U.S. Atlantic margin than previously thought, according to a study by researchers from Mississippi State University, the U.S. Geological Survey, and other institutions.

Related Articles


Methane plumes identified in the water column between Cape Hatteras, North Carolina and Georges Bank, Massachusetts, are emanating from at least 570 seafloor cold seeps on the outer continental shelf and the continental slope. Taken together, these areas, which lie between the coastline and the deep ocean, constitute the continental margin. Prior to this study, only three seep areas had been identified beyond the edge of the continental shelf, which occurs at approximately 180 meters (590 feet) water depth between Florida and Maine on the U.S. Atlantic seafloor.

Cold seeps are areas where gases and fluids leak into the overlying water from the sediments. They are designated as cold to distinguish them from hydrothermal vents, which are sites where new oceanic crust is being formed and hot fluids are being emitted at the seafloor. Cold seeps can occur in a much broader range of environments than hydrothermal vents.

"Widespread seepage had not been expected on the Atlantic margin. It is not near a plate tectonic boundary like the U.S. Pacific coast, nor associated with a petroleum basin like the northern Gulf of Mexico," said Adam Skarke, the study's lead author and a professor at Mississippi State University.

The gas being emitted by the seeps has not yet been sampled, but researchers believe that most of the leaking methane is produced by microbial processes in shallow sediments. This interpretation is based primarily on the locations of the seeps and knowledge of the underlying geology. Microbial methane is not the type found in deep-seated reservoirs and often tapped as a natural gas resource.

Most of the newly discovered methane seeps lie at depths close to the shallowest conditions at which deepwater marine gas hydrate can exist on the continental slope. Gas hydrate is a naturally occurring, ice-like combination of methane and water, and forms at temperature and pressure conditions commonly found in waters deeper than approximately 500 meters (1640 feet).

"Warming of ocean temperatures on seasonal, decadal or much longer time scales can cause gas hydrate to release its methane, which may then be emitted at seep sites," said Carolyn Ruppel, study co-author and chief of the USGS Gas Hydrates Project. "Such continental slope seeps have previously been recognized in the Arctic, but not at mid-latitudes. So this is a first."

Most seeps described in the new study are too deep for the methane to directly reach the atmosphere, but the methane that remains in the water column can be oxidized to carbon dioxide. This in turn increases the acidity of ocean waters and reduces oxygen levels.

Shallow-water seeps that may be related to offshore groundwater discharge were detected at the edge of the shelf and in the upper part of Hudson Canyon, an undersea gorge that represents the offshore extension of the Hudson River. Methane from these seeps could directly reach the atmosphere, contributing to increased concentrations of this potent greenhouse gas. More extensive shallow-water surveys than described in this study will be required to document the extent of such seeps.

Some of the new methane seeps were discovered in 2012. In summer 2013 a Brown University undergraduate and National Oceanic and Atmospheric Administration Hollings Scholar Mali'o Kodis worked with Skarke to analyze about 94,000 square kilometers (about 36,000 square miles) of water column imaging data to map the methane plumes. The data had been collected by the vessel Okeanos Explorer between 2011 and 2013. The Okeanos Explorer and the Deep Discoverer remotely operated vehicle, which has photographed the seafloor at some of the methane seeps, are managed by NOAA's Office of Ocean Exploration and Research.

"This study continues the tradition of advancing U.S. marine science research through partnerships between federal agencies and the involvement of academic researchers," said John Haines, coordinator of the USGS Coastal and Marine Geology Program "NOAA's Ocean Exploration program acquired state-of-the-art data at the scale of the entire margin, while academic and USGS scientists teamed to interpret these data in the context of a research problem of global significance."

The study, "Widespread methane leakage from the sea floor on the northern US Atlantic Margin," by A, Skarke, C. Ruppel, M, Kodis, D. Brothers and E. Lobecker in Nature Geoscience is available on line.

USGS Gas Hydrates Project

The USGS has a globally recognized research effort studying natural gas hydrates in deepwater and permafrost settings worldwide. USGS researchers focus on the potential of gas hydrates as an energy resource, the impact of climate change on gas hydrates, and seafloor stability issues.

For more information about the U.S. Geological Survey's Gas Hydrates Project, visit the Woods Hole Coastal and Marine Science Center, U.S. Geological Survey Gas Hydrates Project website (http://woodshole.er.usgs.gov/).

For more information, visit the Mississippi State University website (http://www.msstate.edu/).


Story Source:

The above story is based on materials provided by U.S. Geological Survey. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Skarke, C. Ruppel, M. Kodis, D. Brothers, E. Lobecker. Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nature Geoscience, 2014; DOI: 10.1038/ngeo2232

Cite This Page:

U.S. Geological Survey. "Natural methane seepage on U.S. Atlantic ocean margin widespread." ScienceDaily. ScienceDaily, 25 August 2014. <www.sciencedaily.com/releases/2014/08/140825141457.htm>.
U.S. Geological Survey. (2014, August 25). Natural methane seepage on U.S. Atlantic ocean margin widespread. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2014/08/140825141457.htm
U.S. Geological Survey. "Natural methane seepage on U.S. Atlantic ocean margin widespread." ScienceDaily. www.sciencedaily.com/releases/2014/08/140825141457.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins