NEW: Find great deals on the latest gadgets and more in the ScienceDaily Store!
Science News
from research organizations

Capturing 'black gold' with light

Date:
March 17, 2016
Source:
Monash University
Summary:
New research has found a simple and effective way of capturing graphenes and the toxins and contaminants they attract from water by using light. The findings could have significant implications for large-scale water purification.
Share:
FULL STORY

By simply shining the right color of light on the graphene, contaminants and light-sensitive soap mixture, the graphene clusters together and sinks; shining a different color of light re-disperses it for re-use.
Credit: Monash University

New Monash University research published this week in the Royal Society of Chemistry journal Nanoscale has found a simple and effective way of capturing graphenes and the toxins and contaminants they attract from water by using light. The findings could have significant implications for large-scale water purification.

A small amount of a special light-sensitive soap was added to the water containing the graphenes and contaminants. The soap changes its molecular structure when light of a particular colour is shone onto it. This changes the way it interacts with carbon materials in the graphene and causes them to separate out (along with contaminants stuck to them), enabling easier extraction of the graphenes and contaminants. Shining a different coloured light re-disperses the graphenes for re-use.

Monash researcher Dr Rico Tabor explained the diverse technological opportunities offered by graphene owing to its unique structure and properties.

"Among its many potential uses, the prospect of using graphenes for the purpose of water purification is extremely promising. Because the structure is essentially two-dimensional and only an atom thick, graphene `sheets' have the highest surface area possible, meaning their capacity to mop up contaminants in water surpass that of any currently used materials or membranes," Dr Tabor said.

"However, this raises the problem of how to extract the graphenes and contaminants from water. Traditional approaches use high amounts of energy by centrifugation, or adding large amounts of polymer at high cost," Dr Tabor said.

Co-researcher Thomas McCoy explained the significance of these latest research findings and the benefits of using light to capture graphenes.

"Light is appealing as it is abundantly available, simple and low cost when compared to most separation methods. Our latest research findings could have significant implications for cost-effective, large-scale water treatment," Mr McCoy said.


Story Source:

Materials provided by Monash University. Note: Content may be edited for style and length.


Journal Reference:

  1. Thomas M. McCoy, Amelia C. Y. Liu, Rico F. Tabor. Light-controllable dispersion and recovery of graphenes and carbon nanotubes using a photo-switchable surfactant. Nanoscale, 2016; DOI: 10.1039/C6NR00075D

Cite This Page:

Monash University. "Capturing 'black gold' with light." ScienceDaily. ScienceDaily, 17 March 2016. <www.sciencedaily.com/releases/2016/03/160317105732.htm>.
Monash University. (2016, March 17). Capturing 'black gold' with light. ScienceDaily. Retrieved September 29, 2016 from www.sciencedaily.com/releases/2016/03/160317105732.htm
Monash University. "Capturing 'black gold' with light." ScienceDaily. www.sciencedaily.com/releases/2016/03/160317105732.htm (accessed September 29, 2016).