New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

3D computer graphics

3D computer graphics (in contrast to 2D computer graphics) are graphics that utilize a three-dimensional representation of geometric data that is stored in the computer for the purposes of performing calculations and rendering 2D images. Such images may be for later display or for real-time viewing. Despite these differences, 3D computer graphics rely on many of the same algorithms as 2D computer vector graphics in the wire frame model and 2D computer raster graphics in the final rendered display. In computer graphics software, the distinction between 2D and 3D is occasionally blurred; 2D applications may use 3D techniques to achieve effects such as lighting, and primarily 3D may use 2D rendering techniques. 3D computer graphics are often referred to as 3D models. Apart from the rendered graphic, the model is contained within the graphical data file. However, there are differences. A 3D model is the mathematical representation of any three-dimensional object (either inanimate or living). A model is not technically a graphic until it is visually displayed. Due to 3D printing, 3D models are not confined to virtual space. A model can be displayed visually as a two-dimensional image through a process called 3D rendering, or used in non-graphical computer simulations and calculations.

Related Stories
 


Computers & Math News

November 21, 2025

Researchers have discovered a way to store information using a rare class of materials called ferroaxials, which rely on swirling electric dipoles instead of magnetism or charge. These vortex-like states are naturally stable and resistant to outside ...
New research shows that light’s magnetic field is far more influential than scientists once believed. The team found that this magnetic component significantly affects how light rotates as it passes through certain materials. Their work challenges ...
Researchers created scalable quantum circuits capable of simulating fundamental nuclear physics on more than 100 qubits. These circuits efficiently prepare complex initial states that classical computers cannot handle. The achievement demonstrates a ...
Researchers have found a way to make “dark excitons”—normally invisible quantum states of light—shine dramatically brighter by trapping them inside a tiny gold-nanotube optical cavity. This breakthrough boosts their emission 300,000-fold and ...
A Princeton team built a new tantalum-silicon qubit that survives for over a millisecond, far surpassing today’s best devices. The design tackles surface defects and substrate losses that have limited transmon qubits for years. Easy to integrate ...
Researchers combined deep learning with high-resolution physics to create the first Milky Way model that tracks over 100 billion stars individually. Their AI learned how gas behaves after supernovae, removing one of the biggest computational ...
Aalto University researchers have developed a method to execute AI tensor operations using just one pass of light. By encoding data directly into light waves, they enable calculations to occur naturally and simultaneously. The approach works ...
Researchers have created a prediction method that comes startlingly close to real-world results. It works by aiming for strong alignment with actual values rather than simply reducing mistakes. Tests on medical and health data showed it often ...
Scientists have developed a new way to build rare-earth crystals that boosts quantum coherence to tens of milliseconds. This leap could extend quantum communication distances from city blocks to entire continents. The method uses atom-by-atom ...
UC Santa Barbara physicists have engineered entangled spin systems in diamond that surpass classical sensing limits through quantum squeezing. Their breakthrough enables next-generation quantum sensors that are powerful, compact, and ready for ...
Scientists at EPFL have unraveled the mystery behind why biological nanopores, tiny molecular holes used in both nature and biotechnology, sometimes behave unpredictably. By experimenting with engineered versions of the bacterial pore aerolysin, ...
Stanford scientists found that strontium titanate improves its performance when frozen to near absolute zero, showing extraordinary optical and mechanical behavior. Its nonlinear and piezoelectric ...

Latest Headlines

updated 12:56 pm ET