Featured Research

from universities, journals, and other organizations

UD Computer News: Lone Glowing Molecule Points Out 'Potholes'

Date:
April 7, 1998
Source:
University Of Delaware
Summary:
Like the flashing yellow sign on a road under construction, glowing molecular markers might help computer-chip makers avoid 'potholes' on super-flat blueprinting materials, a University of Delaware researcher reported April 1 during the American Chemical Society meeting.

DALLAS -- Like the flashing yellow sign on a road under construction, glowing molecular markers might help computer-chip makers avoid 'potholes' on super-flat blueprinting materials, a University of Delaware researcher reported April 1 during the American Chemical Society meeting.

"We deploy a lone fluorescent molecule to measure imperfections on the surface of materials used as templates for integrated circuits," explains Mary J. Wirth, a professor of chemistry and biochemistry at UD and winner of a 1994 National Science Foundation Creativity Award. "Our goal is to measure surface flatness optically, on the molecular scale, as fast as we can."

The work is still preliminary, but promising, and it may set the stage for new optical polishing techniques, allowing chip makers to correct photomask imperfections in real time, says Wirth's collaborator, Daniel W. van der Weide, director of UD's new Center for Nanomachined Surfaces and one of only 19 researchers in 1998 to receive a Young Investigator Program Award from the U.S. Office of Naval Research.

"A tiny scratch on the surface of a photomask is like having a speck of dirt on a copy machine," says van der Weide, also one of 20 scientists in 1997 to win a National Science Foundation Presidential Early Career Award for Scientists and Engineers. "You never get a clean reproduction."

Fluorescent Flaws

As computer chips or integrated circuits (ICs) become increasingly complex, with ever-smaller components, even molecular-scale flaws can create big problems. Each photomask--a blueprint made of chromium on synthetic quartz, which exposes selected sites on a silicon wafer to ultraviolet light--must be polished to an atomically smooth finish. A scratch no larger than a thousandth of a micron--much slimmer than the wavelength of light, and more than 50,000 times thinner than a human hair--could result in serious photomask limitations, Wirth says.

Traditionally, van der Weide says, one way to spot flaws on photomasks has been to scan the surface with a miniature tip that measures the topography of the surface. The technique, known as atomic force microscopy, is extremely time-consuming, he notes. Wirth's glowing molecular markers rapidly illuminate much larger surface areas.

The UD strategy, Wirth says, is simple: "If you need to measure something the size of a molecule," she says, "you ought to use a molecule." First, silica is washed with nitric acid and water, to remove any contaminants on the surface. Next, a small amount of fluorescent dye with a high affinity for silanols--groups of silicon, oxygen and hydrogen that comprise scratches on silica--is placed on the sample. "Individual fluorescent molecules of an indocarbocyanine dye tightly stick to points along these shallow scratches," says Wirth's collaborator, doctoral candidate Derrick J. Swinton, "because of an electrostatic attraction."

In this way, scratches of atomic dimensions turn into bright fluorescent lines--visible through a high-quality optical microscope, which is positioned beneath the silica sample. Wirth and Swinton attach a specially designed camera to the microscope to capture real-time images of the dye fluorescence. Compared to existing tip-based techniques for probing surfaces, Wirth's approach "lets us quickly find small scratches over large areas," van der Weide says. "The dye molecule amplifies the presence of these imperfections, so that they can be detected quite easily, with conventional microscopes."

Wirth's research is supported by the National Science Foundation and the state of Delaware Advanced Technology Center program.


Story Source:

The above story is based on materials provided by University Of Delaware. Note: Materials may be edited for content and length.


Cite This Page:

University Of Delaware. "UD Computer News: Lone Glowing Molecule Points Out 'Potholes'." ScienceDaily. ScienceDaily, 7 April 1998. <www.sciencedaily.com/releases/1998/04/980407075050.htm>.
University Of Delaware. (1998, April 7). UD Computer News: Lone Glowing Molecule Points Out 'Potholes'. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/1998/04/980407075050.htm
University Of Delaware. "UD Computer News: Lone Glowing Molecule Points Out 'Potholes'." ScienceDaily. www.sciencedaily.com/releases/1998/04/980407075050.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins