Featured Research

from universities, journals, and other organizations

Scenario For High-Temperature, Cuprate Superconductivity Proposed

Date:
September 10, 1999
Source:
University Of Illinois At Urbana-Champaign
Summary:
A University of Illinois theorist has proposed a "midinfrared" scenario that may help explain the mechanism behind high-temperature, cuprate (copper-containing) superconductors.

A University of Illinois theorist has proposed a "midinfrared" scenario that may help explain the mechanism behind high-temperature, cuprate (copper-containing) superconductors.

"Superconductivity in the cuprates could be caused by a saving of the Coulomb energy associated with long wavelengths and midinfrared frequencies," said Anthony J. Leggett, the John D. and Catherine T. MacArthur Professor of Physics at the U. of I. "This saving of Coulomb energy is a natural result of the formation of Cooper pairs, but is not included in the BCS theory, or most generalizations of it; it may be specially important in very 'two dimensional' materials like the cuprates."

The BCS theory -- developed in 1957 by John Bardeen, Leon Cooper and John Schrieffer (all three researchers were at the U. of I. at that time)-- explains superconductivity at temperatures close to absolute zero, but has difficulty accounting for the higher temperatures that were later achieved with the cuprates.

According to BCS theory, electrons can be attracted to one another through interactions with the crystal lattice. These electrons--called Cooper pairs-- can share the same quantum-wave function, which results in a lower energy state for the superconductor.

Cooper-pair production in the cuprates, however, is probably not dependent upon the crystal lattice, Leggett said. Instead, electrons may form Cooper pairs because of a net saving of Coulomb energy.

"My fundamental hypothesis is that the driving force leading to superconductivity in the cuprates is the saving of Coulomb energy in the regime of long wavelengths and midinfrared frequencies," Leggett said. "The main effect of Cooper-pair formation in this region is to reduce the force of repulsion between electrons, which results in a net saving of Coulomb energy."

Whether the Coulomb energy is being saved in the midinfrared region could be answered directly by differential electron-energy-loss spectroscopy measurements, Leggett said.

"For any given material, the electron-energy-loss spectroscopy cross-section is a direct measure of the Coulomb energy locked up in the region," he said. "The midinfrared scenario predicts a spectacularly large decrease in the electron-energy-loss spectroscopy cross-section in the midinfrared region when the material undergoes a transition from the normal state to the superconducting state."

Several research groups are preparing to make such measurements. The scenario also predicts a significant change in the optical spectra, but the theoretical situation here is more complicated.

"Correctly answering the question 'Where is the Coulomb energy saved?' would go a long way toward constraining possible theories of the mechanism behind cuprate superconductivity," said Leggett, who described his midinfrared scenario in the July issue of the Proceedings of the National Academy of Sciences.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Scenario For High-Temperature, Cuprate Superconductivity Proposed." ScienceDaily. ScienceDaily, 10 September 1999. <www.sciencedaily.com/releases/1999/09/990910080241.htm>.
University Of Illinois At Urbana-Champaign. (1999, September 10). Scenario For High-Temperature, Cuprate Superconductivity Proposed. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/1999/09/990910080241.htm
University Of Illinois At Urbana-Champaign. "Scenario For High-Temperature, Cuprate Superconductivity Proposed." ScienceDaily. www.sciencedaily.com/releases/1999/09/990910080241.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins