Featured Research

from universities, journals, and other organizations

Engineers Designing Smart System To Prevent Power Failures

September 15, 1999
Purdue University
Brownouts like those plaguing cities this summer may soon be relegated to the history books if engineers meeting today at Purdue University have their way.

WEST LAFAYETTE, Ind. -- Brownouts like those plaguing cities this summer may soon be relegated to the history books if engineers meeting today at Purdue University have their way.

A national engineering consortium is developing a "self-healing" computerized system designed to prevent power failures by anticipating the quickly changing demands of industrial, commercial and residential electric customers. The system would accurately predict power needs for the coming day and then automatically meet those demands by better managing the distribution of electricity and supplementing the grid with power from small, neighborhood generators, which would kick on when needed.

Such an automated system would enable a sophisticated control of small sections within a service area, which is a sorely needed innovation because changes in electrical demand can vary drastically from one part of town to another.

"We want to endow the grid with certain self-regulation capabilities," says Lefteri Tsoukalas, an associate professor in the Purdue School of Nuclear Engineering.

Recent findings show that the method would be effective in better controlling the flow of electricity during times of peak demand, such as this summer's heat wave. The findings are based partially on the analyses of energy-consumption profiles of customers in the Chicago-area city of DeKalb, Ill., which was chosen for the research because it contains a wide range of users, from a university to industrial and residential neighborhoods. Engineers will discuss the work during a meeting at Purdue on Monday (9/13).

The system will be called TELOS, for Transmission Entities with Learning-Capabilities and On-Line Self-Healing. "Telos" is a Greek word meaning purpose, or the where and why of things, says Tsoukalas, who specializes in "neurofuzzy systems," computer software designed to think more like people by learning from experience and using the "fuzzy logic" of human reasoning.

Because electricity cannot be stored in large amounts, it is extremely difficult to maintain a smooth flow throughout a power grid that is made up of diverse types of customers, some of whom vary their consumption considerably from week to week, day to day or even hour to hour. The supply must be balanced constantly to meet the changing demands, which can fluctuate much differently in various sections of the service area, says Tsoukalas, who heads up a team of Purdue engineers and graduate students participating in the Consortium for the Intelligent Management of the Electric Power Grid. The consortium's other members are Commonwealth Edison Co., the University of Tennessee, the Tennessee Valley Authority and the Electric Power Research Institute, an organization of electric utilities (http://www.epri.com/).

Fuzzy logic systems work by evaluating the overall accuracy, instead of the fine precision, of a solution to a problem. The human brain uses the same sort of approach to make effective decisions.

"We adjust the thermostat in the room not by calculating precisely what the perfect temperature would be, but basically by deciding that it's comfortable or uncomfortable," Tsoukalas says. Another example of fuzzy logic can be found in language. Although human vision can literally distinguish more than a million shades of colors, languages do not contain a million words for colors.

"We would be overwhelmed if we didn't have the ability to summarize," he says.

In a similar way, mathematical models can be used to predict future changes in electricity demands by evaluating the present usage in the context of environmental factors and historical patterns. Such a system might reason along the following lines: "The weather is getting warmer, it's the middle of the summer and the humidity is increasing. Therefore, when historical consumption patterns are considered, we should expect the demand to rise by so much in the next hour."

By automatically adjusting to new conditions, the system is said to be "self-healing," resulting in fewer complications and less frequent power failures.

Utility company workers currently perform the prediction role. They begin the day by trying to anticipate what the power demand will be over the next several hours in the entire grid. However, different parts of the service area sometimes have their own, distinctive microclimates that affect electricity use. Therefore, engineers are aiming to break the service area into "local area grids" that can be managed autonomously by computers.

The consortium will meet from 9:30 a.m. to 4 p.m. Monday (9/13) in Stewart Center at Purdue to discuss recent findings and the direction of future research. TELOS is scheduled to be ready for demonstration by the end of 2001. It will be operated on a trial basis for several years in the Commonwealth Edison and Tennessee Valley Authority service areas. If it works, it will be used on a national level.

Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.

Cite This Page:

Purdue University. "Engineers Designing Smart System To Prevent Power Failures." ScienceDaily. ScienceDaily, 15 September 1999. <www.sciencedaily.com/releases/1999/09/990915080400.htm>.
Purdue University. (1999, September 15). Engineers Designing Smart System To Prevent Power Failures. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/1999/09/990915080400.htm
Purdue University. "Engineers Designing Smart System To Prevent Power Failures." ScienceDaily. www.sciencedaily.com/releases/1999/09/990915080400.htm (accessed August 21, 2014).

Share This

More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins