Featured Research

from universities, journals, and other organizations

Future U.S. Warships Will Be Automated, More Resilient In Battle

Date:
January 10, 2000
Source:
Purdue University
Summary:
Engineers are designing a new generation of automated warships that promise to reduce the size of naval crews by half, a welcome advancement in an era of shrinking U.S. military personnel.

WEST LAFAYETTE, Ind. -- Engineers are designing a new generation of automated warships that promise to reduce the size of naval crews by half, a welcome advancement in an era of shrinking U.S. military personnel.

"One goal is to build a ship that does not need any maintenance while at sea," says Scott Sudhoff, an associate professor at Purdue University's School of Electrical and Computer Engineering. "It's supposed to be highly robust so that, even if you take a missile hit, that ship could continue to fight its way into battle and continue with its mission without needing any maintenance until returning to port."

An important feature of the new naval vessels will be a system that automatically reroutes power around sections of a ship that are damaged in war, enabling the continued functioning of weapons, navigation and communication equipment. Congress recently approved research funding for the Energy Systems Analysis Consortium, led by engineers at Purdue and the University of Missouri-Rolla, to develop technologies critical to the system.

The U.S. Navy hopes to have the first "smart ships" in operation by the end of the decade.

Recent trends have made automated technologies especially necessary; the Navy has seen a 33 percent decrease in military personnel over the last decade and a significant reduction in experienced seamen.

The future warships will differ fundamentally from conventional vessels in that they will run on electric motors, and their power sources will not be connected directly to the propellers. Instead, the power source, such as a diesel or gas turbine engine, will drive a large electrical generator. The generator will, in turn, provide electricity for the motors that turn the propellers.

This sort of arrangement will offer far more flexibility for naval architects because the power source can be placed anywhere on the ship, instead of directly in line with the propellers.

In a conventional ship, the engines are continuously being throttled up and down to propel the vessel at different speeds. However, turbines connected to electrical generators can run at a constant speed, saving fuel, says Sudhoff, who, along with James Drewniak, an associate professor of electrical engineering at the University of Missouri, is heading the engineering consortium's work on the electric power and propulsion system.

The system will enable engineers and architects to design modular vessels consisting of several redundant "zones." If one zone gets severely damaged in an attack, automatic controls will instantaneously reroute the power to the rest of the ship.

However, one major challenge in building the next-generation ships is designing an electric power system that can be "automatically reconfigured" to compensate for damaged zones. The system is difficult to manage because of the myriad possible pathways over which electricity might have to be rerouted, the numerous pieces of equipment being switched on and off, and the ultra-high voltages and currents involved.

The voltage and current will be controlled by means of a method known as "power electronics," in which electricity is processed with semiconductor "converters." For example, if there is a drop in voltage leading to a particular piece of equipment, the voltage is converted automatically to its proper value so that the equipment is unaffected. But converting the power introduces instabilities to other parts of the system that must be fully anticipated and dealt with. Otherwise, the entire electrical system could fail, which would be catastrophic in battle.

Predicting the system's behavior under a multitude of conditions requires development of new mathematical testing techniques.

"Most people think you just plug something into the wall and it runs," Sudhoff says. "You can't do that with these devices. They have to be controlled with power electronics. Instead of five volts and miliamps, it's thousands of volts and thousands of amps.

"One of the big focuses of our research is finding the analytical tools to facilitate designs that can be proven to be stable over all operating conditions."


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Future U.S. Warships Will Be Automated, More Resilient In Battle." ScienceDaily. ScienceDaily, 10 January 2000. <www.sciencedaily.com/releases/2000/01/000110071254.htm>.
Purdue University. (2000, January 10). Future U.S. Warships Will Be Automated, More Resilient In Battle. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2000/01/000110071254.htm
Purdue University. "Future U.S. Warships Will Be Automated, More Resilient In Battle." ScienceDaily. www.sciencedaily.com/releases/2000/01/000110071254.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com
Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins