Featured Research

from universities, journals, and other organizations

Self-Adjusting Chips To Extend Limits Of Computing Power

Date:
August 18, 2000
Source:
University Of Rochester
Summary:
A team of scientists at the University of Rochester is undertaking the next step in computing-designing a chip that reconfigures itself as it runs, adapting to the needs of software while processing faster and using less power while doing so.

A team of scientists at the University of Rochester is undertaking the next step in computing-designing a chip that reconfigures itself as it runs, adapting to the needs of software while processing faster and using less power while doing so. The adaptable chip signals an effort to take full advantage of the massive processing power that chip makers now deliver to desktops every day.

David Albonesi, assistant professor of electrical and computer engineering at the University of Rochester, leads the team, which has created a model called Complexity-Adaptive Processing (CAP) that monitors the way a piece of software uses the microprocessor hardware, and then adapts that hardware accordingly. The result is a more efficient processor that doesn't dawdle while running many tasks. Early tests have shown CAP able to halve the energy consumption of part of the chip while also improving performance.

"Today's microprocessors are pretty inefficient when handling a variety of tasks," says Albonesi. "They're designed to work well overall, but since they're inflexible they can't work as well as they could for any particular program."

The innovation came to Albonesi one Saturday when he decided to lock himself in a room and not come out until he'd thought up something novel. He started to look into certain inefficient parts of a chip, such as the cache, a kind of storage closet on the chip where frequently needed information can be stowed and accessed quickly. Most microprocessors today contain two types of cache, with a larger, slower cache acting as a backup to a smaller, faster one. Although the sizes of these caches are fixed in today's microprocessors, different programs require different sizes to run most efficiently. Similar to how a thermostat controls an air-conditioning system, the CAP design monitors the program as it runs and adjusts the sizes and speeds of the caches as needed, saving the energy taken to maintain them, and saving the time taken to track down information inside them.

Along with Albonesi, Eby Friedman, professor of electrical and computer engineering; Sandhya Dwarkadas, assistant professor of computer science; and Michael Scott, professor of computer science, pooled their resources to develop the system further. The researchers recently received $3 million in funding from the U.S. Defense Advanced Research Projects Agency to continue the work.

The team has a number of other tricks that it expects will produce even greater improvements, including changing the value of "one." Microchips send information by means of "zeros" and "ones," with the zeros represented by no voltage, and the ones represented by a voltage high enough to be detected above the background noise of electricity flowing through the chip. By reducing such things as the cache size, the scientists can lower the overall noise in a particular part of a chip, allowing them to lower the voltage needed to represent a one and thus saving energy. Like the changing cache size, this alteration can be done and undone as needed, millions of times each second, as the processor cranks along.

The CAP model may be able to save even more energy by offering ways to switch fewer transistors in the chip between one and zero, and by slowing down the processor's speed and lowering the voltage when it detects that a program can get by on less. Some of today's processors, such as the Pentium III, have the option of lowering voltage to save battery life on laptops, but this requires running at a slower speed. The team's design should allow even longer battery life while computing just as quickly or faster than today's microchips.

"We're becoming a more and more wireless world, and that means more and more processors draining batteries," says Albonesi. "While computing power has rocketed forward, battery technology hasn't kept pace. By making cell phones and portable computers more efficient, we'll make them run faster while the batteries last longer." Albonesi notes that even non battery-powered computers could benefit, especially for dot-com companies like Amazon that depend on rooms full of power-hungry computers.

Other research teams are experimenting with reconfigurable computing, but using chips that are much slower and don't pack as many transistors. The CAP system, on the other hand, is based on common, commercial chips, and could be integrated into a future version of household PCs without a loss of speed.

"This is leading-edge work," says James E. Smith, professor of electrical and computer engineering at the University of Wisconsin. "This is changing the traditional bounds between hardware and software." Smith says that while brute force powers chips today, streamlining their operations can only make them work better-and someday when current methods have pushed chips as fast as they can go, "We'll have to rely on innovations like this to go faster."


Story Source:

The above story is based on materials provided by University Of Rochester. Note: Materials may be edited for content and length.


Cite This Page:

University Of Rochester. "Self-Adjusting Chips To Extend Limits Of Computing Power." ScienceDaily. ScienceDaily, 18 August 2000. <www.sciencedaily.com/releases/2000/08/000811064937.htm>.
University Of Rochester. (2000, August 18). Self-Adjusting Chips To Extend Limits Of Computing Power. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2000/08/000811064937.htm
University Of Rochester. "Self-Adjusting Chips To Extend Limits Of Computing Power." ScienceDaily. www.sciencedaily.com/releases/2000/08/000811064937.htm (accessed October 20, 2014).

Share This



More Computers & Math News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Facebook Says The DEA's Fake Accounts Go Too Far

Facebook Says The DEA's Fake Accounts Go Too Far

Newsy (Oct. 19, 2014) Facebook says the DEA violated its Terms of Service and that such impersonations damage the integrity of the site. Video provided by Newsy
Powered by NewsLook.com
Tech Giants Push Back After FBI Suggests Less Encryption

Tech Giants Push Back After FBI Suggests Less Encryption

Newsy (Oct. 19, 2014) FBI Director James Comey's stance on encryption technology isn't receiving much support from the tech community. Video provided by Newsy
Powered by NewsLook.com
As Sweden Hunts For Sub, "Cold War" Comparisons Flourish

As Sweden Hunts For Sub, "Cold War" Comparisons Flourish

Newsy (Oct. 19, 2014) With Sweden on the look-out for a suspected Russian sub, a lot of people are talking about the Cold War, but is it an apt comparison? Video provided by Newsy
Powered by NewsLook.com
Court Ruling Means Kids' Online Activity Could Be On Parents

Court Ruling Means Kids' Online Activity Could Be On Parents

Newsy (Oct. 17, 2014) In a ruling attorneys for both sides agreed was a first of its kind, a Georgia appeals court said parents can be held liable for what kids put online. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins