Featured Research

from universities, journals, and other organizations

Control Technique Cuts Electricity Bills For Commercial Buildings

Date:
August 13, 2001
Source:
Purdue University
Summary:
"Pre-cooling" structures so that it takes less power to cool buildings during times of peak demand is not a new technique. But engineers at Purdue University are the first researchers to create a computer-simulation tool that can be "tuned" to a specific building and used to document the savings that would be realized by using the technique for that specific building.

WEST LAFAYETTE, Ind. — Research engineers have shown that electricity costs for office buildings can be reduced by up to 40 percent by running air conditioning overnight.

Related Articles


"Pre-cooling" structures so that it takes less power to cool buildings during times of peak demand is not a new technique. But engineers at Purdue University are the first researchers to create a computer-simulation tool that can be "tuned" to a specific building and used to document the savings that would be realized by using the technique for that specific building. The analysis tool takes into account factors including utility rates and climate, and it can be used to tailor the best pre-cooling strategy for individual buildings.

The pre-cooling technique is especially practical in areas where utility companies are having trouble meeting demands for electricity. In those areas, the price for daytime electricity is much higher than the price charged overnight.

The tool was tested on a four-floor, 1.4 million-square-foot Ameritech Corp. office building in the Chicago-area suburb of Hoffman Estates, Ill. The simulation showed that a pre-cooling technique could reduce electricity costs by as much as 41 percent during the hottest summer months.

The findings will be detailed in a paper that will appear in October's International Journal of Heating, Ventilating, Air-Conditioning and Refrigerating Research, published by the American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc. The paper was written by James Braun, a Purdue professor of mechanical engineering, and graduate students Kent Montgomery and Nitin Chaturvedi.

The simulation tool also was used to learn how well the technique would work in five cities: Boston, Chicago, Miami, Phoenix and Seattle.

"Significant savings were achieved in all locations except for Seattle," Braun said.

With the exception of Seattle, the utilities in those cities charge considerably more for electricity during peak hours, such as mid-afternoon, than at other times. The difference between peak and off-peak rates ranged from 1.9 times higher in Phoenix to 4.7 times higher in Boston, according to the research paper, which quoted 1999 rates.

The study only considered cooling the building using the air-conditioning system. But even greater savings could be possible in climates in which cool outside air can be brought into the building at night to provide pre-cooling. This option for pre-cooling could have resulted in some savings for Seattle, Braun said.

Utility companies also impose an "on-peak demand" charge, in which the total number of kilowatts consumed during times of peak demand are multiplied by a certain dollar amount. In the case of the Ameritech building, the peak-demand charge was $16.41.

"You take your peak kilowatt draw that occurs throughout the whole month and you multiply that by $16.41," Braun said. "That can really add up for a facility this large."

The higher peak-demand rates are an incentive for customers to conserve power.

"They don't have capacity problems in Seattle, so they don't need the incentive," Braun said.

The conventional cost-cutting approach for commercial buildings is to raise the thermostat settings after workers go home for the day, essentially shutting down the air conditioners while the building is not occupied. However, this approach ignores the "significant thermal storage potential" in many commercial buildings, Braun said.

Sun-heated walls contribute to a building's rising daytime temperature. But pre-cooling the building by running air conditioning overnight helps to control the temperature rise. Because the structure's mass has been cooled down, the building does not require as much energy for cooling during the day, when electricity is most expensive.

"Solar radiation strikes the walls, and then the air is heated by the walls," Braun said. "By cooling the walls, you have reduced those (heat) gains."

The pre-cooling technique is applied in "thermal mass control strategies," in which a building's structure is cooled overnight.

Thermal mass control strategies should be tailored for each building, depending on its size, the climate and other factors. The energy-saving strategy that worked best for the Ameritech building required that the building be cooled overnight to about 67 degrees Fahrenheit. Shortly before employees began arriving for work, the thermostats were turned up to a more conservative temperature, such as 74 degrees.

Thermal mass control strategies are being used by some companies.

"It's being done a little bit, but not in a very organized fashion, and without really understanding how to do it and what the benefits are," Braun said.

Research has shown that using a thermal mass control strategy improperly can actually result in higher energy costs. Factors such as a building's construction, the design of its air-conditioning system and regional weather conditions must be carefully considered to determine how to best use a thermal mass control strategy.

The new "thermal mass simulation tool" developed at Purdue is the first method that can be tuned to a specific building's performance and documents the degree of savings that can be realized by the technique. It can be used to pinpoint the exact strategy to use for a particular building.

"With this tool we can do some measurements on a building, and then use those measurements to develop a model," Braun said. "Then, the model can tell you whether it makes sense to use this kind of control in your building.

"The technique is not quite ready for commercialization. The next step is to perform some additional case studies with other buildings, and a graduate student is working on this."


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Control Technique Cuts Electricity Bills For Commercial Buildings." ScienceDaily. ScienceDaily, 13 August 2001. <www.sciencedaily.com/releases/2001/08/010813081606.htm>.
Purdue University. (2001, August 13). Control Technique Cuts Electricity Bills For Commercial Buildings. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2001/08/010813081606.htm
Purdue University. "Control Technique Cuts Electricity Bills For Commercial Buildings." ScienceDaily. www.sciencedaily.com/releases/2001/08/010813081606.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins