Featured Research

from universities, journals, and other organizations

Simulation Explains Mystery Of Giant Planets' Tiny Moons

Date:
December 5, 2001
Source:
Cornell University News Service
Summary:
In what could be the ultimate in fast-forward, Cornell University planetary scientists have used one of the world's most powerful computing clusters to simulate motions of the small moons of Jupiter over a one billion-year epoch. From this, the researchers have learned how the tugs and pulls of the sun and planets -- even from hundreds of millions of miles away -- shake out the permanent moons of the giant planets from those that get tossed away. In a three-month computing marathon, the Velocity I cluster at the Cornell Theory Center was able to mimic cosmic conditions over eons that would cause physical perturbations in the moons of Jupiter.

NEW ORLEANS - In what could be the ultimate in fast-forward, Cornell University planetary scientists have used one of the world's most powerful computing clusters to simulate motions of the small moons of Jupiter over a one billion-year epoch. From this, the researchers have learned how the tugs and pulls of the sun and planets -- even from hundreds of millions of miles away -- shake out the permanent moons of the giant planets from those that get tossed away.

Related Articles


In a three-month computing marathon, the Velocity I cluster at the Cornell Theory Center was able to mimic cosmic conditions over eons that would cause physical perturbations in the moons of Jupiter. The calculations were produced by entering orbital data from hypothetical moons of the planet. As a result, the astronomers now have an explanation for the unusual orbits of 12 confirmed small, eccentric moons of Jupiter.

Joseph Burns, Cornell professor of astronomy and engineering, and Valerio Carruba, Cornell graduate student in astronomy, will detail their research in a talk, "On the Orbital Distribution of Irregular Satellite Systems," at the American Astronomical Society's Division for Planetary Sciences meeting today (Nov. 30) at the Hyatt Superdome in New Orleans. Joining Carruba and Burns on the research were Philip D. Nicholson, Cornell professor of astronomy; Brett J. Gladman, Observatoire de la Cτte d'Azur, Nice, France; and Matthew J. Holman, Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.

"The big moons are the ones you know and love, and their orbits are circular and they are always in the planets' equatorial plane," says Burns. "The small moons, about 10 to 100 miles in diameter, have been captured by the large planets and they have distant, elongated, elliptical orbits that are highly inclined. We wanted to know why." None of the irregular moons (that is, those with non-circular orbits) has an inclination -- the angle relative to the planet's orbital plane -- between 47 degrees and 141 degrees. Thus, there is an area of Jupiter's sky free from moons of any sort. The astronomers discovered that any tiny moons that might once have orbited well off Jupiter's orbital plane, have smashed into the planet or have been tossed into a perpetual orbit around the sun, says Carruba. Below the 39-degree orbital plane, the eccentricities of the moons' elongated-elliptical orbit change little.

In other words, an observer positioned on Jupiter's equator would see the four large Galilean moons grouped directly overhead and the tiny satellites (the 12 confirmed plus a dozen other recently discovered moons) scattered as much as 40 degrees away. Far to the north and south there would be no moons.

To try to explain this phenomenon, the astronomers turned to the Cornell Theory Center's Velocity I cluster. The 256-processor cluster consists of 64 Dell PowerEdge servers, each with four Intel Pentium III Xeon 500 Mhz processors and running Microsoft Windows 2000 operating system. The astronomers "installed" hypothetical moons around Jupiter, programmed in the physical perturbations that would likely occur in a simulated scenario and mimicked cosmic conditions for a period of one billion years.

In addition to finding how the sun's gravity pulls the moons from their orbits, the researchers are studying why the orbits of the tiny moons are tightly clumped together. The astronomers have deduced that the moons were once larger objects broken apart by cometary or asteroidal collisions.

Burns says this research is an early step to understanding how the giant planets were formed. "This research is similar to how archaeologists -- by investigating what remains -- reconstruct the birth and death of civilizations," says Burns. "As planetary scientists, we have a comparable opportunity to decipher the origin of giant planets by interpreting the orbital distribution structure of irregular satellites that still orbit their planets. We hope to use the observed distribution to start to unravel the formations of the planets themselves."


Story Source:

The above story is based on materials provided by Cornell University News Service. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University News Service. "Simulation Explains Mystery Of Giant Planets' Tiny Moons." ScienceDaily. ScienceDaily, 5 December 2001. <www.sciencedaily.com/releases/2001/12/011203061301.htm>.
Cornell University News Service. (2001, December 5). Simulation Explains Mystery Of Giant Planets' Tiny Moons. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2001/12/011203061301.htm
Cornell University News Service. "Simulation Explains Mystery Of Giant Planets' Tiny Moons." ScienceDaily. www.sciencedaily.com/releases/2001/12/011203061301.htm (accessed October 26, 2014).

Share This



More Space & Time News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: China Launches Moon Orbiter

Raw: China Launches Moon Orbiter

AP (Oct. 24, 2014) — China launched an experimental spacecraft Friday to fly around the moon and back to Earth in preparation for the country's first unmanned return trip to the lunar surface. (Oct. 24) Video provided by AP
Powered by NewsLook.com
China Prepares Unmanned Mission To Lunar Orbit

China Prepares Unmanned Mission To Lunar Orbit

Newsy (Oct. 23, 2014) — The mission is China's next step toward automated sample-return missions and eventual manned missions to the moon. Video provided by Newsy
Powered by NewsLook.com
Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) — Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins