Featured Research

from universities, journals, and other organizations

Tiny Refrigerator Taking Shape To Cool Future Computers

Date:
June 24, 2008
Source:
Purdue University
Summary:
Researchers are developing a miniature refrigeration system small enough to fit inside laptops and personal computers, a cooling technology that would boost performance while shrinking the size of computers.

Researchers at Purdue are developing a miniature refrigeration system small enough to fit inside laptops and personal computers, a cooling technology that would boost performance while shrinking the size of computers. The researchers collect data using a myriad of sensors to precisely measure how a refrigerant boils and vaporizes inside tiny "microchannels" in a part of the refrigeration system called an evaporator. Eckhard Groll, at left, a professor of mechanical engineering, and Suresh Garimella, the R. Eugene and Susie E. Goodson Professor of Mechanical Engineering, discuss the microchannel data at the Ray W. Herrick Laboratories.
Credit: Purdue News Service photo/David Umberger

Researchers at Purdue University are developing a miniature refrigeration system small enough to fit inside laptops and personal computers, a cooling technology that would boost performance while shrinking the size of computers.

Unlike conventional cooling systems, which use a fan to circulate air through finned devices called heat sinks attached to computer chips, miniature refrigeration would dramatically increase how much heat could be removed, said Suresh Garimella, the R. Eugene and Susie E. Goodson Professor of Mechanical Engineering.

The Purdue research focuses on learning how to design miniature components called compressors and evaporators, which are critical for refrigeration systems. The researchers developed an analytical model for designing tiny compressors that pump refrigerants using penny-size diaphragms and validated the model with experimental data. The elastic membranes are made of ultra-thin sheets of a plastic called polyimide and coated with an electrically conducting metallic layer. The metal layer allows the diaphragm to be moved back and forth to produce a pumping action using electrical charges, or "electrostatic diaphragm compression."

In related research, the engineers are among the first to precisely measure how a refrigerant boils and vaporizes inside tiny "microchannels" in an evaporator and determine how to vary this boiling rate for maximum chip cooling.

The research is led by Garimella and Eckhard Groll, a professor of mechanical engineering.

"We feel we have a very good handle on this technology now, but there still are difficulties in implementing it in practical applications," said Garimella, director of the Cooling Technologies Research Center based at Purdue. "One challenge is that it's difficult to make a compressor really small that runs efficiently and reliably."

Findings will be detailed in two papers being presented during the 12th International Refrigeration and Air Conditioning Conference and the 19th International Compressor Engineering Conference on July 14-17 at Purdue. The papers were written by doctoral students Stefan S. Bertsch and Abhijit A. Sathe, Groll and Garimella.

New types of cooling systems will be needed for future computer chips that will likely generate 10 times more heat than today's microprocessors, especially in small "hot spots," Garimella said.

Miniature refrigeration has a key advantage over other cooling technologies, Groll said. "The best that all other cooling methods can achieve is to cool the chip down to ambient temperature, whereas refrigeration allows you to cool below surrounding temperatures," he said.

The ability to cool below ambient temperature could result in smaller, more powerful computers and also could improve reliability by reducing long-term damage to chips caused by heating.

One complication is that the technology would require many diaphragms operating in parallel to pump a large enough volume of refrigerant for the cooling system.

"So you have an array of 50 or 100 tiny diaphragm compressors, and you can stack them," Groll said.

The researchers conducted laboratory experiments with the diaphragms in Garimella's Thermal Microsystems Lab, developed a computational model for designing the compressor and validated the model with data from the lab. Findings showed that it is feasible to design a prototype system small enough to fit in a laptop, Garimella said.

The model enables the engineers to optimize the design, determining how many diaphragms to use and how to stack them, either parallel to each other or in series.

"If you stack in one direction, you get more pressure rise, and if you stack in the other direction, you get more volume pumped," Groll said.

Learning how to manufacture the devices at low cost is another major challenge, with industry requiring a cost of about $30 each.

"We can't currently produce them at this price, but maybe in the future," Groll said.

Another portion of the research focuses on learning precisely how refrigerant boils and turns into a vapor as it flows along microchannels thinner than a human hair. Such evaporators would be placed on top of computer chips.

Bertsch, the doctoral student who led work to set up experiments at the university's Ray W. Herrick Laboratories, observed how refrigerant boils inside the channels and measured how much heat is transferred by this boiling refrigerant. He also created mathematical equations needed to properly design the miniature evaporators.

"This overall project represents the first comprehensive research to carefully obtain data showing what happens to heat transfer in arrays of microchannels for miniature refrigeration systems and how to design miniature compressors," Garimella said. "Eventually, we will be able to design both the miniature compressors and evaporators."

Some of the research was performed at the Birck Nanotechnology Center in Purdue's Discovery Park.

The research is funded by the Purdue-based National Science Foundation Cooling Technologies Research Center, a consortium of corporations, university and government laboratories working to overcome heat-transfer obstacles in developing new, compact cooling technologies. Groll's research is based at Herrick Laboratories.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Tiny Refrigerator Taking Shape To Cool Future Computers." ScienceDaily. ScienceDaily, 24 June 2008. <www.sciencedaily.com/releases/2008/06/080619152239.htm>.
Purdue University. (2008, June 24). Tiny Refrigerator Taking Shape To Cool Future Computers. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2008/06/080619152239.htm
Purdue University. "Tiny Refrigerator Taking Shape To Cool Future Computers." ScienceDaily. www.sciencedaily.com/releases/2008/06/080619152239.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
China's Drone King Says the Revolution Depends on Regulators

China's Drone King Says the Revolution Depends on Regulators

Reuters - Business Video Online (July 30, 2014) Comparing his current crop of drones to early personal computers, DJI founder Frank Wang says the industry is poised for a growth surge - assuming regulators in more markets clear it for takeoff. Jon Gordon reports. Video provided by Reuters
Powered by NewsLook.com
3Doodler Bring 3-D Printing to Your Hand

3Doodler Bring 3-D Printing to Your Hand

AP (July 30, 2014) 3-D printing is a cool technology, but it's not exactly a hands-on way to make things. Enter the 3Doodler: the pen that turns you into the 3-D printer. AP technology writer Peter Svensson takes a closer look. (July 30) Video provided by AP
Powered by NewsLook.com
Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins