Featured Research

from universities, journals, and other organizations

BioVault Locks Up Biometrics

Date:
August 4, 2009
Source:
Inderscience Publishers
Summary:
A system that allows biometric data to be used to create a secret key for data encryption has been developed by researchers in South Africa.

A system that allows biometric data to be used to create a secret key for data encryption has been developed by researchers in South Africa. They describe details of the new technology in the International Journal of Electronic Security and Digital Forensics this month.

Related Articles


If a user, a web customer say, wishes to send a message or other data to another user, an online shop, over an unsecured network, the message must be encrypted to avoid interception of sensitive information such as passwords and credit card information.

Encryption relies on authentication being symmetric to work. In other words, the user's password or PIN must match the password or PIN stored by the online shop to lock and unlock the data. This is because encryption systems use the password or PIN to produce, or seed, a random number that is used as the cipher for encrypting the data. If the passwords do not match exactly then the seed will be incorrect, the random number different and the decryption will fail.

One way to avoid users having to remember endless, complicated passwords is to use biometrics, including fingerprints, iris pattern, face recognition. However, biometrics is not a symmetric process. The initial recording of biometric data samples only a limited amount of the information, the pigment patter in one's iris, for instance. The unlocking process then compares the iris pattern, or other biometric "token", being presented for access with the sample stored in the database. If the match is close enough, the user can gain entry.

The reason for this asymmetry is that any biometric system takes only a digital sample of data from the fingerprint or iris, for instance. Moreover, even the legitimate user will not be able to present exactly the same biometric data repeatedly. The close enough aspect of biometrics does not make biometrics insecure, provided that the closeness is very precise, but it does mean that biometric tokens cannot be used to create a secret key for an encryption algorithm.

Bobby Tait and Basie von Solms of the University of Johannesburg, Gauteng, South Africa, explain how biometrics can nevertheless be used to make a consistent secret key for encryption.

In conventional encryption, if Alice wishes to send a secret message to Bill, then she must encrypt the message, whether it is an email or credit card details transmitted from her computer to the online shop. In order for the encryption algorithm to provide cipher text that is random, a secret key must be provided. Alice and Bill must share exact copies of their secret key for this to work.

Aside from the asymmetry in biometrics, this approach will not work because Alice and Bill cannot provide the same biometric token to encrypt and decrypt the message. Now, Tait and von Solms have used the so-called BioVault infrastructure to provide a safe and secure way for Alice and Bill to share biometric tokens and so use their fingerprints, iris pattern, or other biometric to encrypt and decrypt their data without their biometrics being intercepted.

The BioVault encryption system works as follows:

  • In phase 1, Alice identifies herself to the authentication server, and indicates that she wants to send an encrypted message to Bill and requests Bill's biometric key from the server.
  • In phase 2, the server retrieves a random biometric key from Bill's stored biometric keys.
  • In phase 3, Alice uses the biometric key to encrypt her message and sends it to Bill.
  • In phase 4, Bill receives the message sent by Alice, and decrypts the message by testing the biometric keys in his database against the received cipher text.

The fact that each biometric key (data) is unique means that the BioVault system can irrevocably identify and authenticate users through their biometric keys (data) and detect fraudulent use of biometric keys.

Tait adds that the same approach could also be used to digitally sign electronic documents, files, or software executables using biometrics. He will be presenting the team's results on this aspect of their work in the UK at the beginning of September. "If passwords or tokens are used for authentication, only the password or token is proven as authentic - not the user that supplied the token or password," he explains, "Biometrics authenticates the user directly - this was one of the drivers behind the BioVault development."


Story Source:

The above story is based on materials provided by Inderscience Publishers. Note: Materials may be edited for content and length.


Journal Reference:

  1. BioVault: biometrically based encryption. Int. J. Electronic Security and Digital Forensics, 2009, 2, 269-279

Cite This Page:

Inderscience Publishers. "BioVault Locks Up Biometrics." ScienceDaily. ScienceDaily, 4 August 2009. <www.sciencedaily.com/releases/2009/07/090731085817.htm>.
Inderscience Publishers. (2009, August 4). BioVault Locks Up Biometrics. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2009/07/090731085817.htm
Inderscience Publishers. "BioVault Locks Up Biometrics." ScienceDaily. www.sciencedaily.com/releases/2009/07/090731085817.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins