## Featured Research

from universities, journals, and other organizations

# Frog calls inspire a new algorithm for wireless networks

Date:
July 17, 2012
Source:
Plataforma SINC
Summary:
Males of the Japanese tree frog have learnt not to use their calls at the same time so that the females can distinguish between them. Scientists in Spain have used this form of calling behavior to create an algorithm that assigns colours to network nodes -- an operation that can be applied to developing efficient wireless networks.

The 'desynchronised' calls of the Japanese tree frog has inspired the development of an artificial intelligence algorithm.
Credit: © Miwa Koike / Fotolia

Males of the Japanese tree frog have learnt not to use their calls at the same time so that the females can distinguish between them. Scientists at the Polytechnic University of Catalonia have used this form of calling behaviour to create an algorithm that assigns colours to network nodes -- an operation that can be applied to developing efficient wireless networks.

How can network nodes be coloured with the least possible number of colours without two consecutive nodes being the same colour? A team of researchers at the Polytechnic University of Catalonia have found a solution to this mathematical problem with the help of some rather special colleagues: Japanese tree frogs (Hyla japonica).

These male amphibians use their calls to attract the female, who can recognise where it comes from and then locate the suitor. The problem arises when two males are too close to one another and they use their call at the same time. The females become confused and are unable to determine the location of the call. Therefore, the males have had to learn how to 'desynchronise' their calls or, in other words, not call at the same time in order for a distinction to be made.

"Since there is no system of central control organising this "desynchronisation," the mechanism may be considered as an example of natural self-organisation," explains Christian Blum. With the help of his colleague Hugo Hernαndez, such behaviour provided inspiration for "solving the so-called 'graph colouring problem' in an even and distributed way."

A graph is a set of connected nodes. As in the case of the frog's 'desynchronised calls', operating in a 'distributed' fashion implies that there is no other way of central control that helps to solve the problem with a global vision and all the information on the situation.

In the same way, the researchers have devised a new algorithm for assigning colours to network nodes ensuring that each pair of connected nodes is not the same colour. The end goal is to generate a valid solution that uses the least amount of colours.

Application to WiFi connections

As Blum outlines, "this type of graph colouring is the formalisation of a problem that arises in many areas of the real world, such as the optimisation of modern wireless networks with no predetermined structure using techniques for reducing losses in information packages and energy efficiency improvement."

This study falls under the field of 'swarm intelligence', a branch of artificial intelligence that aims to design intelligent systems with multiple agents. This is inspired by the collective behaviour of animal societies such as ant colonies, flocks of birds, shoals of fish and frogs, as in this case.

Story Source:

The above story is based on materials provided by Plataforma SINC. Note: Materials may be edited for content and length.

Journal Reference:

1. Hugo Hernαndez, Christian Blum. Distributed graph coloring: an approach based on the calling behavior of Japanese tree frogs. Swarm Intelligence, 2012; 6 (2): 117 DOI: 10.1007/s11721-012-0067-2

Plataforma SINC. "Frog calls inspire a new algorithm for wireless networks." ScienceDaily. ScienceDaily, 17 July 2012. <www.sciencedaily.com/releases/2012/07/120717100123.htm>.
Plataforma SINC. (2012, July 17). Frog calls inspire a new algorithm for wireless networks. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/07/120717100123.htm
Plataforma SINC. "Frog calls inspire a new algorithm for wireless networks." ScienceDaily. www.sciencedaily.com/releases/2012/07/120717100123.htm (accessed July 23, 2014).

## More Computers & Math News

Wednesday, July 23, 2014

### Featured Research

from universities, journals, and other organizations

### Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

### Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014)  'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Six Indicted in StubHub Hacking Scheme

### Six Indicted in StubHub Hacking Scheme

AP (July 23, 2014)  Six people were indicted Wednesday in an international ring that took over more than 1,000 StubHub users' accounts and fraudulently bought tickets that were then resold. (July 23) Video provided by AP
The Reviews Are In For The Amazon Fire Phone

### The Reviews Are In For The Amazon Fire Phone

Newsy (July 23, 2014)  Amazon's first smartphone, the Fire Phone, is set to ship this week, and so far the reviews have been pretty mixed. Video provided by Newsy
Bigger Apple Phone, Bigger Orders

### Bigger Apple Phone, Bigger Orders

Reuters - Business Video Online (July 22, 2014)  Apple is asking suppliers to make 70 to 80 million units of its new larger screen iPhone, a lot more initially than its current model. Fred Katayama reports. Video provided by Reuters

## Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):

Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

## In Other News

... from NewsDaily.com

Save/Print:
Share:

## Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

## Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

## Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web