New! Sign up for our free email newsletter.
Science News
from research organizations

Turbulences at a standstill

Date:
July 27, 2012
Source:
Springer Science+Business Media
Summary:
Energy flowing from large-scale to small-scale places may be prevented from flowing freely in specific conditions. For one theoretical physicists, devising models of chaos and turbulence is his bread and butter. He has found an exception in a model of turbulence, indicating that there are energy flows from large to small scale in confined space.
Share:
FULL STORY

Energy flowing from large-scale to small-scale places may be prevented from flowing freely in specific conditions.

For theoretical physicist Dima Shepelyansky from the CNRS-University of Toulouse, France, devising models of chaos and turbulence is his bread and butter. In a recent study published in The European Physical Journal B, he presents an exception he found in a model of turbulence, indicating that there are energy flows from large to small scale in confined space. Indeed, under a specific energy threshold, there are no energy flows, similar to the way electron currents and energy spreading are stopped in disordered solids.

The author relies on numerical simulations to study a kind of turbulence-known as Kolmogorov turbulence-that describes how energy flows from large to small scale in a confined space. According to this concept, energy is introduced on large scales, e.g. by wind, and it is absorbed on small scales due to energy dissipation. This approach assumes that a small perturbation will make the system evolution chaotic as energy flows from large to small scales.

However, Shepelyansky found that a phenomenon normally observed in disordered metals, called Anderson localization, which implies that there is no energy flow from one side of the metal to the other, also occurred with the type of turbulences he was focusing on. As a result, energy flow from large scale to small scale does not happen under specific circumstances where the energy level is below a certain threshold level. This result is in keeping with our intuitive experience of a small wind not creating a storm, and that wind needs to reach a certain threshold before a storm can be created.

Thus his study successfully links three areas of research based on chaos, disordered solids and turbulence, including wave turbulence, dynamical systems and statistical mechanics.

:


Story Source:

Materials provided by Springer Science+Business Media. Note: Content may be edited for style and length.


Journal Reference:

  1. D. L. Shepelyansky. Kolmogorov turbulence, Anderson localization and KAM integrability. The European Physical Journal B, 2012; 85 (6) DOI: 10.1140/epjb/e2012-30193-0

Cite This Page:

Springer Science+Business Media. "Turbulences at a standstill." ScienceDaily. ScienceDaily, 27 July 2012. <www.sciencedaily.com/releases/2012/07/120727095559.htm>.
Springer Science+Business Media. (2012, July 27). Turbulences at a standstill. ScienceDaily. Retrieved March 19, 2024 from www.sciencedaily.com/releases/2012/07/120727095559.htm
Springer Science+Business Media. "Turbulences at a standstill." ScienceDaily. www.sciencedaily.com/releases/2012/07/120727095559.htm (accessed March 19, 2024).

Explore More

from ScienceDaily

RELATED STORIES