Featured Research

from universities, journals, and other organizations

Tissue-penetrating light releases chemotherapy inside cancer cells

Date:
February 20, 2014
Source:
University of California, Los Angeles (UCLA), Health Sciences
Summary:
An innovative technique that can carry chemotherapy safely and release it inside cancer cells when triggered by two-photon laser in the infrared red wave length has been developed. A light-activated drug delivery system is particularly promising, because it can accomplish spatial and temporal control of drug release. Finding ways to deliver and release anticancer drugs in a controlled manner that only hits the tumor can greatly reduce the amount of side effects from treatment, and also greatly increase the cancer-killing efficacy of the drugs. The difficulty of treating cancer often derives from the difficulties of getting anticancer chemotherapy drugs to tumor cells without damaging healthy tissue in the process. Many cancer patients experience treatment side effects that are the result of drug exposure to healthy tissues.

Red light (stock image). A light-activated drug delivery system for chemotherapy is particularly promising, because it can accomplish spatial and temporal control of drug release.
Credit: © barneyboogles / Fotolia

Researchers from the cancer nanotechnology and signal transduction and therapeutics programs of UCLA's Jonsson Comprehensive Cancer Center (JCCC) have developed an innovative technique that can carry chemotherapy safely and release it inside cancer cells when triggered by two-photon laser in the infrared red wave length. Drs. Jeffrey Zink, professor of chemistry and biochemistry, and Fuyu Tamanoi, professor of microbiology, immunology and molecular genetics, and colleagues published their findings in the journal Small online ahead of print on February 20, 2014.

A light-activated drug delivery system is particularly promising, because it can accomplish spatial and temporal control of drug release. Finding ways to deliver and release anticancer drugs in a controlled manner that only hits the tumor can greatly reduce the amount of side effects from treatment, and also greatly increase the cancer-killing efficacy of the drugs. The difficulty of treating cancer often derives from the difficulties of getting anticancer chemotherapy drugs to tumor cells without damaging healthy tissue in the process. Many cancer patients experience treatment side effects that are the result of drug exposure to healthy tissues.

A major challenge in the development of light-activated drug delivery is to design a system that can respond to tissue-penetrating light. Drs. Tamanoi and Zink joined their diverse teams and collaborated with Dr. Jean-Olivier Durand at University of Montpellier, France to develop a new type of microscopic particles (nanoparticles) that can absorb energy from tissue-penetrating light that releases drugs in cancer cells.

These new nanoparticles are equipped with specially designed nanovalves that can control release of anticancer drugs from thousands of pores, or tiny tubes, which hold molecules of chemotherapy drugs within them. The ends of the pores are blocked with capping molecules that hold the drug in like a cork in a bottle. The nanovalves contain special molecules that respond to the energy from two-photon light exposure, which opens the pores and releases the anticancer drugs. The operation of the nanoparticles was demonstrated in the laboratory using human breast cancer cells.

Because the effective depth range of the two-photon laser in the infrared red wavelength can reach 4 centimeters from the skin surface, this delivery system is best for tumors that can be reached within that range, which possibly include breast, stomach, colon, and ovarian cancers.

Another feature of the nanoparticles is that they are fluorescent and thus can be tracked in the body with molecular imaging techniques. This allows the researchers to track the progress of the nanoparticle into the cancer cell to insure that it is in its target before light activation. This ability to track a targeted therapy to its target has been given the name "theranostics" (a portmanteau of therapy and diagnostics) in the scientific literature.

"We have a wonderful collaboration," said Zink, "when the JCCC brings together totally diverse fields, in this case a physical chemist and a cell signaling scientist, we can do things that neither one could do alone."

"Our collaboration with scientists at Charles Gerhardt Institute was important to the success of this two-photon activated technique," said Tamanoi, "which provides controls over drug delivery to allow local treatment that dramatically reduces side effects."


Story Source:

The above story is based on materials provided by University of California, Los Angeles (UCLA), Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jonas Croissant, Arnaud Chaix, Olivier Mongin, Miao Wang, Sιbastien Clιment, Laurence Raehm, Jean-Olivier Durand, Vincent Hugues, Mireille Blanchard-Desce, Marie Maynadier, Audrey Gallud, Magali Gary-Bobo, Marcel Garcia, Jie Lu, Fuyuhiko Tamanoi, Daniel P. Ferris, Derrick Tarn and Jeffrey I. Zink. Two-Photon-Triggered Drug Delivery via Fluorescent Nanovalves. Small, February 2014 DOI: 10.1002/smll.201400042

Cite This Page:

University of California, Los Angeles (UCLA), Health Sciences. "Tissue-penetrating light releases chemotherapy inside cancer cells." ScienceDaily. ScienceDaily, 20 February 2014. <www.sciencedaily.com/releases/2014/02/140220083005.htm>.
University of California, Los Angeles (UCLA), Health Sciences. (2014, February 20). Tissue-penetrating light releases chemotherapy inside cancer cells. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2014/02/140220083005.htm
University of California, Los Angeles (UCLA), Health Sciences. "Tissue-penetrating light releases chemotherapy inside cancer cells." ScienceDaily. www.sciencedaily.com/releases/2014/02/140220083005.htm (accessed April 19, 2014).

Share This



More Health & Medicine News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) — In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) — A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) — The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) — President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins