New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Supercomputer

A supercomputer is a computer that leads the world in terms of processing capacity, particularly speed of calculation, at the time of its introduction. Supercomputers are used for highly calculation-intensive tasks such as problems involving quantum mechanical physics, weather forecasting, climate research (including research into global warming), molecular modeling (computing the structures and properties of chemical compounds, biological macromolecules, polymers, and crystals), physical simulations (such as simulation of airplanes in wind tunnels, simulation of the detonation of nuclear weapons, and research into nuclear fusion), cryptanalysis, and the like. Major universities, military agencies and scientific research laboratories are heavy users.

Related Stories
 


Computers & Math News

November 30, 2025

Quantum communication is edging closer to reality thanks to a breakthrough in teleporting information between photons from different quantum dots—one of the biggest challenges in building a quantum internet. By creating nearly identical ...
Researchers have directly observed Floquet effects in graphene for the first time, settling a long-running scientific debate. Their ultrafast light-based technique demonstrates that graphene’s ...
Princeton researchers found that the brain excels at learning because it reuses modular “cognitive blocks” across many tasks. Monkeys switching between visual categorization challenges revealed that the prefrontal cortex assembles these blocks ...
Researchers have discovered a way to store information using a rare class of materials called ferroaxials, which rely on swirling electric dipoles instead of magnetism or charge. These vortex-like states are naturally stable and resistant to outside ...
New research shows that light’s magnetic field is far more influential than scientists once believed. The team found that this magnetic component significantly affects how light rotates as it passes through certain materials. Their work challenges ...
Researchers created scalable quantum circuits capable of simulating fundamental nuclear physics on more than 100 qubits. These circuits efficiently prepare complex initial states that classical computers cannot handle. The achievement demonstrates a ...
Researchers have found a way to make “dark excitons”—normally invisible quantum states of light—shine dramatically brighter by trapping them inside a tiny gold-nanotube optical cavity. This breakthrough boosts their emission 300,000-fold and ...
A Princeton team built a new tantalum-silicon qubit that survives for over a millisecond, far surpassing today’s best devices. The design tackles surface defects and substrate losses that have limited transmon qubits for years. Easy to integrate ...
Researchers combined deep learning with high-resolution physics to create the first Milky Way model that tracks over 100 billion stars individually. Their AI learned how gas behaves after supernovae, removing one of the biggest computational ...
Aalto University researchers have developed a method to execute AI tensor operations using just one pass of light. By encoding data directly into light waves, they enable calculations to occur naturally and simultaneously. The approach works ...
Researchers have created a prediction method that comes startlingly close to real-world results. It works by aiming for strong alignment with actual values rather than simply reducing mistakes. Tests on medical and health data showed it often ...
Scientists have developed a new way to build rare-earth crystals that boosts quantum coherence to tens of milliseconds. This leap could extend quantum communication distances from city blocks to entire continents. The method uses atom-by-atom ...

Latest Headlines

updated 12:56 pm ET