Featured Research

from universities, journals, and other organizations

Oxygen Discovered At Callisto's Surface, Sulfur Dioxide Sources At Io

Date:
December 11, 1997
Source:
University Of Colorado At Boulder
Summary:
New data from a University of Colorado at Boulder instrument on board the Galileo spacecraft now at Jupiter indicates one of its four large moons, Callisto, has oxygen on its surface and another, Io, continues to emit hot volcanic gases.

New data from a University of Colorado at Boulder instrument on board the Galileo spacecraft now at Jupiter indicates one of its four large moons, Callisto, has oxygen on its surface and another, Io, continues to emit hot volcanic gases.

Charles Barth, a senior researcher at the Laboratory for Atmospheric and Space Physics and a member of the CU science team that designed and built the ultraviolet spectrometer flying on Galileo, said hydrogen atoms escaping from Callisto implies the Mercury-sized moon has oxygen locked up in its ice and rocks. In 1996 the CU Galileo team detected evidence of oxygen on the surface of Callisto's neighboring moon, Ganymede.

On Ganymede, the UV spectrometer data from Galileo indicated hydrogen atoms were being knocked off the icy surface by charged particles emanating from Jupiter's plasma torus, a massive, doughnut-shaped ring surrounding the planet, said Barth. Because hydrogen atoms are lighter than oxygen atoms, the hydrogen floated out of the atmosphere and into space, leaving the oxygen behind.

But on Callisto, the furthest of the four large moons from Jupiter, it appears that sunlight striking its rock-hard ice is the primary mechanism for separating the hydrogen and oxygen atoms, he said.

Callisto, roughly 3,000 miles in diameter, is the most heavily cratered moon in the solar system. Callisto is the third largest moon in the solar system behind Ganymede and Titan, the dominant moon of Saturn.

"Because it is further away from Jupiter, Callisto does not interact as strongly as Ganymede with the charged particles in the planet's atmosphere," said Barth. "Instead, we believe it is the ultraviolet solar radiation that is knocking the hydrogen atoms out of the ice on Callisto."

The surface of Ganymede is thought to contain about 50 percent ice, while the ice on the surface of Callisto is thought to comprise less than 20 percent of the planet's surface, said Barth, a professor in the astrophysical and planetary sciences department and former director of LASP.

The CU team, which also has been monitoring sulfur dioxide emissions from Io during recent Galileo fly-bys, discovered that the gases are the result of both active volcanoes and the sublimination of frost on Io's surface. The analysis of the Io data, led by LASP Research Associate Amanda Hendrix, indicates the volcanic activity on Io is extremely variable.

The researchers, who made 10 observations of Io volcanoes with the UV spectrometer, found that the thickness of Io's sulfur dioxide atmosphere varied with both time and location over the past year, said Hendrix. Any water present on Io probably disappeared billions of years ago when the volcanic activity commenced.

Launched in 1989 aboard the space shuttle Atlantis, the Galileo spacecraft arrived at Jupiter orbit in December 1995. The Galileo spacecraft is managed for NASA by the Jet Propulsion Laboratory of the California Institute of Technology.

Barth and Hendrix presented the CU-Boulder Galileo results at the fall meeting of the American Geophysical Union in San Francisco Dec. 8 to Dec. 12.

Other LASP researchers on the Galileo UV spectrometer science team led by principal investigator Charles Hord include Ian Stewart, Wayne Pryor, Bill McClintock and Karen Simmons. The team also includes scientists from JPL and the University of Arizona.

Data is being sent from the spacecraft to Deep Space Network antennas located in Goldstone, Calif., Madrid, Spain, and Canberra, Australia. Information from the CU spectrometers is sent on to JPL, then forwarded over data lines to LASP's Space Technology Building in the CU Research Park. The incoming information will be analyzed by faculty and students.

While the original mission goals of Galileo have been accomplished, the instruments will continue to gather data, said Barth. Two primary targets in the next two years will be the continuing search for a possible ocean under the icy surface of the moon, Europa, and additional observations of Io's violent volcanoes.


Story Source:

The above story is based on materials provided by University Of Colorado At Boulder. Note: Materials may be edited for content and length.


Cite This Page:

University Of Colorado At Boulder. "Oxygen Discovered At Callisto's Surface, Sulfur Dioxide Sources At Io." ScienceDaily. ScienceDaily, 11 December 1997. <www.sciencedaily.com/releases/1997/12/971211074040.htm>.
University Of Colorado At Boulder. (1997, December 11). Oxygen Discovered At Callisto's Surface, Sulfur Dioxide Sources At Io. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/1997/12/971211074040.htm
University Of Colorado At Boulder. "Oxygen Discovered At Callisto's Surface, Sulfur Dioxide Sources At Io." ScienceDaily. www.sciencedaily.com/releases/1997/12/971211074040.htm (accessed July 23, 2014).

Share This




More Space & Time News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, July 18, 2014

This Week @ NASA, July 18, 2014

NASA (July 18, 2014) Apollo 11 yesterday, Next Giant Leap tomorrow, Science instruments for Europa mission, and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins