Featured Research

from universities, journals, and other organizations

New Class Of Dust Ring Discovered Around Jupiter

Date:
April 6, 1998
Source:
University Of Colorado At Boulder
Summary:
A team led by the University of Colorado at Boulder has found new evidence that a faint, doughnut-shaped ring of interplanetary and interstellar dust some 700,000 miles in diameter is orbiting Jupiter.

A team led by the University of Colorado at Boulder has found new evidence that a faint, doughnut-shaped ring of interplanetary and interstellar dust some 700,000 miles in diameter is orbiting Jupiter.

Related Articles


Voyager 2 detected an uneven dust ring around Jupiter in 1979 ranging from 200 to 3,000 miles in diameter that was created by the collisions of small moonlets with micro-meteoroids in the Jovian system, said University of Colorado at Boulder researcher Joshua Colwell. But the newly identified ring of dust originating from beyond the Jovian system appears to be much larger, more sparse and, thus far, unique in the solar system.

Surprisingly, most of the interstellar and interplanetary dust particles appear to be in a "retrograde" orbit -- that is, moving in the opposite direction of the rotating planet and its moons, said Colwell, a research associate at CU-Boulder's Laboratory for Atmospheric and Space Physics. The reason for the backward orbit of the tiny particles is not yet clear, he said.

The evidence for the new ring's existence comes from computer simulations that correlate with data collected by a dust detector aboard NASA's Galileo spacecraft now orbiting Jupiter and its moons. "We believe that the Galileo spacecraft has detected this ring by capturing some of its dust," Colwell said.

A paper on the subject by Colwell, LASP research associate Mihaly Horanyi and planetary scientist Eberhard Grun of the Max Planck Institute for Astrophysics in Heidelberg was published in the April 3 issue of Science.

Interstellar and interplanetary dust grains between about .6 micrometers and 1.4 micrometers are captured by Jupiter's magnetosphere, or area of magnetic influence, according to the study.

Such particles are smaller than the diameter of a human hair and about the size of smoke particles.

"If these particles are just the right size, they lose energy to the magnetosphere and are captured in the ring," he said. Grains smaller than that are deflected away from the magnetosphere while larger grains retain enough of their energy to avoid capture by the magnetosphere.

The dust grains in the new class of dust ring are scarce enough that a photon of light sent through the faint ring would have less than one in a billion chance of hitting a dust grain. "I suspect we may wind up seeing something similar at Saturn," said Colwell. Launched in 1997, the Cassini spacecraft will reach the ringed planet in 2004.

The bowl-shaped metal dust detector on Galileo has a charged grid over its top. As the detector sweeps back and forth through space, tiny specks of dust that hit the bowl vaporize, creating a small cloud that is detected by the grid. The direction and motion of the detector can tell scientists the direction and velocity of the interplanetary and interstellar dust rings.

Although dust always is entering the solar system, it also is escaping, said Colwell. Research by CU's Horanyi in 1993 using Ulysses spacecraft data indicated that some of the microscopic dust particles originating from volcanoes on Jupiter's moon, Io, were traveling in streams at more than 100 miles per second. This allowed them not only to escape Jupiter's magnetic grip but to escape from the solar system as well, said Colwell.

Horanyi also has predicted that the violent collision between comet Shoemaker-Levy and Jupiter in 1993 should form a new ring of dust around the planet by 2003.

Colwell and a group of eight present or former students designed and built a payload that will launch on NASA's space shuttle Columbia April 16 to study the collisions of dust particles in space. The microgravity provided by the shuttle will allow them to analyze the gentle collisions of dust grains in space, helping them to better understand the life cycle of such particles.


Story Source:

The above story is based on materials provided by University Of Colorado At Boulder. Note: Materials may be edited for content and length.


Cite This Page:

University Of Colorado At Boulder. "New Class Of Dust Ring Discovered Around Jupiter." ScienceDaily. ScienceDaily, 6 April 1998. <www.sciencedaily.com/releases/1998/04/980406074339.htm>.
University Of Colorado At Boulder. (1998, April 6). New Class Of Dust Ring Discovered Around Jupiter. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/1998/04/980406074339.htm
University Of Colorado At Boulder. "New Class Of Dust Ring Discovered Around Jupiter." ScienceDaily. www.sciencedaily.com/releases/1998/04/980406074339.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Space & Time News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Mars Rover Opportunity Celebrates 11-Year Anniversary

Mars Rover Opportunity Celebrates 11-Year Anniversary

Rumble (Jan. 26, 2015) Eleven years ago NASA&apos;s Opportunity rover touched down on Mars for what was only supposed to be a 90-day mission. Since then it has traveled 25.9 miles (41.7 kilometers), further than any other off-Earth surface vehicle has ever driven. Credit to &apos;NASA&apos;. Video provided by Rumble
Powered by NewsLook.com
NASA's On Course To Take Pluto's Best Photo Ever

NASA's On Course To Take Pluto's Best Photo Ever

Newsy (Jan. 25, 2015) NASA&apos;s New Horizons probe is en route to snap a picture of Pluto this summer, but making sure it doesn&apos;t miss its one chance to do so starts now. Video provided by Newsy
Powered by NewsLook.com
Rosetta Captures Stunning Views, Diverse Data Of Comet 67P

Rosetta Captures Stunning Views, Diverse Data Of Comet 67P

Newsy (Jan. 23, 2015) The first images of the European Space Agency&apos;s Rosetta probe comet orbit could provide clues about its origin and how it got its unique shape. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins