Featured Research

from universities, journals, and other organizations

Molecular Computers? Munich/UD Researchers Report First Glimpse Of Artificial Molecule In Action

Date:
July 9, 1998
Source:
University Of Delaware
Summary:
As researchers worldwide scramble to create computers based on molecular and even biological systems, University of Munich and University of Delaware researchers will report the first-ever glimpse of 'artificial molecules' at work--thanks to a new invention for stimulating them the way light excites real molecules.

JULY 7, 1998-As researchers worldwide scramble to create computers based on molecular and even biological systems, University of Munich and University of Delaware researchers will report the first-ever glimpse of 'artificial molecules' at work--thanks to a new invention for stimulating them the way light excites real molecules.

Related Articles


"We developed a technology for probing artificial molecules that allowed us to see a phenomenon analogous to Rabi oscillations [pronounced RAH-bee], which are actions observed in real molecules," says Rogert H. Blick of the University of Munich, lead author of a paper scheduled to appear in the July 13 issue of the journal, Physical Review Letters. Blick performed the work at the Max Planck Institute for Solid State Research in Stuttgart, in collaboration with Daniel W. van der Weide (say WHY-deh), an associate professor of electrical and computer engineering at the University of Delaware.

Observations of artificial molecules in motion could help bring researchers one step closer to making the 21st-century dream of biocomputers a reality, says van der Weide, one of 20 scientists in 1997 to win a National Science Foundation Presidential Early Career Award for Scientists and Engineers. "Human beings walk around with this incredible bioprocessor in their heads," he notes. "The brain uses very little energy, and yet it has billions of exquisite interconnections. This is why humans and animals can perform complex tasks such as pattern recognition, which is very difficult for traditional, semiconductor-based computers."

Someday, explains van der Weide, technologies based on simple biological systems such as molecules and membranes might help researchers develop, for example, an auxiliary, biologically based processor, capable of recognizing hazardous materials or identifying spending patterns on credit applications.

Such technologies remain elusive for now, Blick emphasizes, but the Munich/UD researchers--including Rolf J. Haug of the University of Hannover and Karl Eberl of the Max Planck Institute for Solid State Research--were encouraged by their initial sneak-peek of artificial molecular activity. And, Blick says, the new detection system may help researchers overcome technological hurdles associated with artificial molecules, which currently function only at near-absolute-zero temperatures, and at relatively slow speeds.

Harnessing Particles in a Box

Artificial molecules are nothing new, van der Weide says. Researchers have been creating them for the past several years by exploiting a concept often described as the "particle-in-a-box problem," he says. When a particle is confined to tight quarters, he explains, it exhibits "quantized energies."

By capturing single or small quantities of electrons inside box-like structures known as quantum dots or "artificial atoms," Blick says, researchers can harness and manipulate quantized energies. Pairs of artificial atoms have been coupled to create artificial molecules. And, groups of artificial molecules eventually might be assembled to form basic molecular or biological systems, offering many intricate interconnections, which should promote a better understanding of real systems.

As conventional, semiconductor integrated circuits keep shrinking, van der Weide notes, the number of wire-based interconnections between individual components continues to increase, too, causing operational problems. "When you put millions and, someday, billions of these devices together," he says, "the heat load becomes enormous. A computer will cook itself, or at least slow down and malfunction."

Unfortunately, Blick says, no one has been able to investigate the behavior of artificial molecules in motion-until now.

Looking for Life

To detect signs of molecular activity in a semiconductor model, the research team set out to observe Rabi oscillations-the characteristic movement of electrons traveling back and forth between two points or molecules, a behavior first described by the late Austrian-born U.S. physicist Isidor Isaac Rabi. The resulting technique, van der Weide says, is analogous to conventional spectroscopy, used for studying real molecules by analyzing their energies based on observations of their spectra, which include colors.

Specifically, he says, the instrument prompts an electron moving between two artificial atoms to interact with high-frequency pulses of electromagnetic radiation, in the 2 to 400 gigahertz range, corresponding to the energy levels of the artificial molecule. The instrument is a dual-source spectrometer, incorporating a pair of integrated circuits for generating these short pulses, thereby "communicating with the traveling electron by interfering with it," van der Weide says. The two short-pulse sources are tuned nearly to the same frequency, so that their interference creates a "beat note" similar to what one hears when tuning a musical instrument with a tuning form, he explains. This beat note is at a low frequency, making it convenient for detection, yet it carries information about the high-frequency response of the artificial molecule, he says.

While the system is a far cry from a full-scale molecular computer or even a biologically based component, van der Weide says it may help set the stage for new computing strategies. Existing, semiconductor-based computers most likely will reach their speed and size limitations around the year 2020, Blick predicts. "If we want to keep moving forward," he says, "we need to investigate new options now."


Story Source:

The above story is based on materials provided by University Of Delaware. Note: Materials may be edited for content and length.


Cite This Page:

University Of Delaware. "Molecular Computers? Munich/UD Researchers Report First Glimpse Of Artificial Molecule In Action." ScienceDaily. ScienceDaily, 9 July 1998. <www.sciencedaily.com/releases/1998/07/980709090311.htm>.
University Of Delaware. (1998, July 9). Molecular Computers? Munich/UD Researchers Report First Glimpse Of Artificial Molecule In Action. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/1998/07/980709090311.htm
University Of Delaware. "Molecular Computers? Munich/UD Researchers Report First Glimpse Of Artificial Molecule In Action." ScienceDaily. www.sciencedaily.com/releases/1998/07/980709090311.htm (accessed October 31, 2014).

Share This



More Computers & Math News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Samsung's Incredible Shrinking Smartphone Profits

Samsung's Incredible Shrinking Smartphone Profits

Reuters - Business Video Online (Oct. 30, 2014) — The world's top mobile maker is under severe pressure, delivering a 60 percent drop in Q3 profit as its handset business struggles. Turning it around may not prove easy, says Reuters' Jon Gordon. Video provided by Reuters
Powered by NewsLook.com
Ban On Wearable Cameras In Movie Theaters Surprises No One

Ban On Wearable Cameras In Movie Theaters Surprises No One

Newsy (Oct. 30, 2014) — The Motion Picture Association of America and the National Association of Theatre Owners now prohibit wearable cameras such as Google Glass. Video provided by Newsy
Powered by NewsLook.com
Microsoft Launches Fitness Band After Accidental Reveal

Microsoft Launches Fitness Band After Accidental Reveal

Newsy (Oct. 30, 2014) — Microsoft accidentally revealed its upcoming fitness band on Wednesday, so the company went ahead and announced it. Video provided by Newsy
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) — A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins