Featured Research

from universities, journals, and other organizations

Microgravity Materials Study On NASA Plane

Date:
July 30, 1998
Source:
Cornell University
Summary:
Most students work in a library, laboratory or classroom, but Cornell University undergraduate Greg Aloe floats in space aboard the same NASA aircraft that Tom Hanks used to simulate zero gravity while filming Apollo 13. Aloe has nose-dived in the stripped and padded Boeing 707 more than 175 times, free falling "like a rock" a dizzying 1.25 miles in 25 seconds. What participants have dubbed the "vomit comet" climbs and then plummets 40 or 50 times during each two-hour flight.

ITHACA, N.Y. -- Most students work in a library, laboratory or classroom, but Cornell University undergraduate Greg Aloe floats in space aboard the same NASA aircraft that Tom Hanks used to simulate zero gravity while filming Apollo 13.

Aloe has nose-dived in the stripped and padded Boeing 707 more than 175 times, free falling "like a rock" a dizzying 1.25 miles in 25 seconds. What participants have dubbed the "vomit comet" climbs and then plummets 40 or 50 times during each two-hour flight.

In the weightlessness that occurs during the free fall, Aloe conducts experiments that could shed light on what makes manufactured solid granular materials separate into their component parts, both with and without gravitational force. The work, now in its feasibility stage, could aid engineers on future lunar and Martian missions seeking to extract fuel, water or other materials from soil in conditions of low gravitational force. A Cornell senior from Madison, Conn., majoring in mechanical engineering, Aloe serves as a part-time research assistant on the project headed by Michel Louge, Cornell professor of mechanical and aerospace engineering, and James T. Jenkins, Cornell professor of theoretical and applied mechanics.

Aloe is one of seven Cornell undergraduate engineering students working on the NASA-funded project with their professors. But he is the only one of the seven to be medically cleared by the space agency to fly on the KC-135. This involved compression chamber tests mimicking low-oxygen, high-altitude conditions to see if he could withstand the extreme conditions of free fall.

With 20 seconds of weightlessness, called microgravity, during each nose dive, Aloe has had a total of almost an hour of free fall during his four flights to carry out experiments. Aloe prides himself on never getting sick on the plane, even though about half of the researchers who fly on the KC-135 have gotten sick. It's common, he says, to see full vomit bags floating to the rear of the plane.

"I think the weightlessness feels a lot like the bouncing buoyancy in scuba diving but without the water to displace if you try to swim. Although a very intense roller coaster may be the closest thing to it you can experience on earth, the feeling in the KC-135 is much weirder. Nothing really can prepare you for it," he says.

Aloe describes the experiments during the free fall as "understanding how solids of two sizes or two densities collide and separate when agitated." From this, he says, researchers hope to learn how to improve the mixing of granular or liquid materials and to prevent them from separating, both on Earth and in space. Microgravity slows down the mixing process, isolates a mechanism independent of gravity and makes it much easier to observe the trajectories of particles colliding, before and after impact, with a fast digital video camera. "This allows us to capture and download velocity and other measurements," says Aloe.

Jenkins, Louge and research assistant Birgir Arnarson originally developed theories and computer simulations to analyze how particles of different sizes might behave in systems of colliding particles. Cornell research engineer Stephen Keast then designed and built a prototype device called a shear cell to test the theories and simulations. Resembling a 3-foot-long racetrack, the shear cell consists of a motor that propels a chain along the inside boundary. Small acrylic or ceramic spheres of various sizes are released into the track.

"As the beads bump the moving chain, they pick up energy and then collide with each other and the boundaries," explains Louge, who has flown the KC-135 eight times, including three with Aloe. The two expect to make further flights to measure chrome and steel beads' agitation and impact properties, such as velocity and fluctuation. With the help of Cornell Theory Center's supercomputer, the researchers hope to predict how the solid particles will separate by their properties.

Other Cornell collaborators who work on the flow and computer visualization aspects of the project include Anthony Reeves, professor of electrical engineering, Elaina McCartney, a computer scientist in mechanical and aerospace engineering, and Michael Garon, a graduate student in electrical engineering.

The other undergraduate students who worked on the impact experiment include Rowin Andruscavage, a junior in mechanical and aerospace engineering, and Claudio Bazzichelli, who just graduated from the same department; Amelia Dudley, sophomore in engineering; and Patrick Florit, Josh Freeh, Lance Hazer and Rami Sabanegh, all seniors in mechanical and aerospace engineering.

-30-

EDITORS: For a color computer simulation of the "racetrack," showing a shear cell with grains of identical density but different sizes, see http://www.mae.cornell.edu/research/microgravity/granular-simulations.html. For a photograph of the prototype shear cell, see http://www.mae.cornell.edu/research/microgravity/cell.html.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Microgravity Materials Study On NASA Plane." ScienceDaily. ScienceDaily, 30 July 1998. <www.sciencedaily.com/releases/1998/07/980730052651.htm>.
Cornell University. (1998, July 30). Microgravity Materials Study On NASA Plane. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/1998/07/980730052651.htm
Cornell University. "Microgravity Materials Study On NASA Plane." ScienceDaily. www.sciencedaily.com/releases/1998/07/980730052651.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins