New! Sign up for our free email newsletter.
Science News
from research organizations

Yale, Bell Labs Physicists Forge Ahead In Field Of 'Spintronics' With First View Of Slow Electron-Spin Dynamics In Semiconductors

Date:
July 31, 1998
Source:
Bell Labs - Lucent Technologies
Summary:
Researchers at Yale University and Lucent Technologies' Bell Labs have advanced the field of 'spintronics' with a new, non-invasive technique to study electron-spin states deep inside semiconductors.
Share:
FULL STORY

In the quest to make faster computer chips and more efficient semiconductor lasers, scientists are exploring the relatively new field of "spintronics," in which the direction an electron spin is pointing is just as important as its charge.

Bringing spintronics down to the atomic level, researchers hope to create new "quantum computers" that encode information in different spin states -- up, down or a mixture of both -- instead of in binary digits (1 or 0). A major hurdle in reaching that goal is to develop new, non-invasive techniques to study electron spin states deep inside semiconductors.

Physicists at Yale University and Lucent Technologies' Bell Labs have done just that with nuclear magnetic resonance (NMR) and have found that the spin states are surprisingly long-lived. Their results are reported in the July 31 issue of the journal Science and in the July 20 issue of Physical Review Letters.

"In a magnetic field, the energy of an electron depends upon whether its spin orientation is up or down," said Sean E. Barrett, leader of the research team. "Future quantum computers may make use of the fact that an electron can be placed simultaneously in both up and down spin states, a possibility outside the reach of classical computers based on binary digits."

The researchers were able to "heat" the electron spins in unique gallium-arsenide samples, using either laser or radio-frequency radiation. Then they used NMR to monitor the "cooling" time. While extremely fleeting by most standards -- in the neighborhood of 100 microseconds or 1/10,000th of a second -- the cooling time is at least 1,000 times longer than other electronic processes measured in semiconductors. In other words, the electrons stay surprisingly long in one spin state before "flipping back" in the other direction.

The discovery may bode well for the feasibility of spin-based quantum bits, Barrett said. "By using lasers and magnets at extremely low temperatures, we can study the spin physics of an electronic system. In such a system, the collective behavior from electron-electron interactions becomes apparent, like the organized motion of a flock of birds in flight," said Barrett, assistant professor of physics and applied physics at Yale, and a former Bell Labs postdoctoral fellow.

Other members of the research team are physicists Loren N. Pfeiffer and Ken W. West, of the Bell Labs Semiconductor Physics Research Department, and Yale graduate students Nicholas N. Kuzma and Pankaj Khandelwal.

Possible applications of the new discovery are manifold. "Recently, interest in electronic spin polarization embedded in solid-state systems has grown with a view toward creating spin transistors and spin memory devices, and for making use of spin coherence in semiconductors for quantum computation," noted James M. Kikkawa and David Awschalom of the University of California, Santa Barbara, in an accompanying "Perspectives" article in the journal Science.

The research team's demonstration that electron spins can be manipulated by radio frequency radiation "suggests the exciting possibility that resonance techniques conventionally targeted at nuclear spins may ultimately prevail in controlling these electronic spins as well," Kikkawa and Awschalom wrote.

Barrett and his colleagues studied electrons confined to a very thin layer of gallium arsenide (GaAs) supplied by Bell Labs, sandwiched between thick layers of aluminum gallium arsenide (AlGaAs). Both semiconductor compounds frequently are used in high-speed electronic components and semiconductor lasers. The researchers cooled their samples to near absolute zero (0.3 degrees Kelvin), or about minus-459 degrees Fahrenheit, thereby restricting electron motion to two dimensions.

A strong magnetic field (12 Tesla, or 240,000 times the earth's magnetic field) was applied perpendicular to the semiconducting layers, placing the electron system into the mysterious domain of the fractional quantum Hall effect, a novel "quantum liquid" state first discovered by Bell Labs scientists Daniel C. Tsui, Horst L. Stormer and Arthur C. Gossard in 1982.

Quantum effects are special laws of physics governing the strange ways electrons behave at very small scales -- behavior that is not seen at larger scales. For example, electrons act more like waves than particles in small electronic devices and can do unexpected things like tunnel through barriers.

By using NMR, a technology frequently used for medical imaging, the researchers were able to probe deeply into the semiconductor layers without heating the electrons, thus enabling them to study electron spin magnetization there for the first time. Circularly polarized laser light was used to boost the NMR signal from the tiny GaAs layers 100-fold -- a crucial step called optical pumping, Barrett said.

The discovery could advance scientific understanding not only in electronics but more broadly in nuclear physics, particle physics and condensed matter physics. Not only do the findings appear to challenge current understanding of the fractional quantum Hall effect, they also provide new details about an exotic "particle" called a Skyrmion, first theorized four decades ago. Skyrmions can be thought of as twists or kinks in a spin space, caused by having a different spin than exists in the underlying fields. "Whether or not these exotic particles are relevant to our new findings is a subject of great current interest," Barrett said.

Funding for this research was from the National Science Foundation and Lucent Technologies.

Lucent Technologies, headquartered in Murray Hill, N.J., designs, builds and delivers a wide range of public and private networks, communications systems and software, data networking systems, business telephone systems and microelectronic components. For more information on Lucent Technologies, visit the company's web site at http://www.lucent.com.

For further information:

Donna Cunningham
Bell Labs, Lucent Technologies
802-482-3748 (office)
donnac@lucent.com

Cynthia L. Atwood
Yale University
203-432-1326
cynthia.atwood@yale.edu


Story Source:

Materials provided by Bell Labs - Lucent Technologies. Note: Content may be edited for style and length.


Cite This Page:

Bell Labs - Lucent Technologies. "Yale, Bell Labs Physicists Forge Ahead In Field Of 'Spintronics' With First View Of Slow Electron-Spin Dynamics In Semiconductors." ScienceDaily. ScienceDaily, 31 July 1998. <www.sciencedaily.com/releases/1998/07/980731083155.htm>.
Bell Labs - Lucent Technologies. (1998, July 31). Yale, Bell Labs Physicists Forge Ahead In Field Of 'Spintronics' With First View Of Slow Electron-Spin Dynamics In Semiconductors. ScienceDaily. Retrieved April 18, 2024 from www.sciencedaily.com/releases/1998/07/980731083155.htm
Bell Labs - Lucent Technologies. "Yale, Bell Labs Physicists Forge Ahead In Field Of 'Spintronics' With First View Of Slow Electron-Spin Dynamics In Semiconductors." ScienceDaily. www.sciencedaily.com/releases/1998/07/980731083155.htm (accessed April 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES