Featured Research

from universities, journals, and other organizations

Bell Labs Scientists Shatter Limit On Fixed Wireless Transmission

Date:
September 9, 1998
Source:
Bell Labs - Lucent Technologies
Summary:
Lucent Technologies announced that scientists at Bell Labs, the company's research and development arm, have developed a breakthrough technology that may potentially boost the capacity of certain wireless links by 10 to 20 times.

MURRAY HILL, N.J. -- Lucent Technologies today announced scientists at Bell Labs, the company's research and development arm, have developed a breakthrough technology that may potentially boost the capacity of certain wireless links by 10 to 20 times.

This innovation, known as BLAST, may allow so-called "fixed" wireless technology to rival the capabilities of today's wired networks, while also providing faster and more cost-effective deployment. One potential application would be for businesses, where wires no longer would be necessary to transmit data between desktop computers, notebook computers and hand-held devices. Another possible use would be providing phone service to remote and rural areas, where wireless networks would connect homes and businesses to copper-wired public telephone service providers.

"Technologies that provide a 10-fold improvement in wireless capacity come along once a decade," said Bell Labs President Dan Stanzione. "This is a very significant scientific development with long-term potential impact on our wireless business."

The BLAST technology is not well suited for mobile wireless applications, such as hand-held and car-based cellular phones, because multiple antennas -- both transmitting and receiving -- are needed. In addition, tracking signal changes in mobile applications would increase the computational complexity.

The inspiration for BLAST (Bell Labs Layered Space-Time) can be traced to a challenge from Rich Gitlin, chief technical officer and Data Networking Technology Vice President in Lucent's Data Networking Systems business unit. Gitlin asked the researchers to take a fresh look at a 50-year-old mathematical theory developed at Bell Labs, which is the theoretical foundation of today's high-speed communications systems. The end result was cramming roughly 10 to 20 times more information on the same frequency band by developing new signal processing techniques.

"The breakthrough results prove the feasibility of a technology which leapfrogs what we assumed about the limitations of radio communications," said Jim Brewington, president of Lucent's Wireless Networks Group. "While there is still a great deal of applied research required before we apply this discovery, we are very excited about its potential implications for our future wireless systems."

The BLAST technology essentially exploits a concept that other researchers believed was impossible. The prevailing view was that each wireless transmission needed to occupy a separate frequency, similar to the way in which FM radio stations within a geographical area are allocated separate frequencies. Otherwise, the interference is too overwhelming for quality communications.

The BLAST researchers, however, theorized it is possible to have several transmissions occupying the same frequency band. Each transmission uses its own transmitting antenna. Then, on the receiving end, multiple antennas again are used, along with innovative signal processing, to separate the mutually interfering transmissions from each other. Thus, the capacity of a given frequency band increases proportionally to the number of antennas.

The BLAST prototype, built to test this theory, uses an array of eight transmit and 12 receive antennas. During its first weeks of operation, it achieved unprecedented wireless capacities of at least 10 times the capacity of today's fixed wireless loop systems, which are used to provide phone service in rural and remote areas.

"This new technology represents an opportunity for future wireless systems of extraordinary communications efficiency," said Bell Labs researcher Reinaldo Valenzuela, who headed the BLAST research team. "This experiment, which was designed to illustrate the basic principle, represents only a first step of using the new technology to achieve higher capacities."

The advanced signal-processing techniques used in BLAST were first developed by researcher Gerard Foschini from a novel interpretation of the fundamental capacity formulas of Claude Shannon's Information Theory, first published in 1948. While Shannon's theory dealt with point-to-point communications, the theory used in BLAST relies on "volume-to -volume" communications, which effectively gives Information Theory a third, or spatial, dimension, besides frequency and time. This added dimension, said Foschini, is important because "when and where noise and interference turn out to be severe, each bit (of data) is well prepared to weather such impairments."

Remarkably, the initial BLAST experiment designed by researchers Glenn Golden and Peter Wolniansky did not use the technology of error correction coding to correct signal errors, nor did the transmitter have prior knowledge of which signal components would propagate easily and which would be severely impaired.

Also, BLAST research by Michael Gans includes determining the optimal placement and number of transmitting and receiving antennas. If, for instance, the distance between antennas on each end were further reduced, the number of potential applications, such as mobile communications, might increase. In addition, researchers are trying to boost capacity even further and exploring how to enhance BLAST for all wireless formats.

More technical information about BLAST is available at http://www.bell-labs.com/news/1998/september. Additional information about the BLAST research project is available at http://www.bell-labs.com/projects/blast. For technical information on the BLAST architecture, see Gerard J. Foschini, "Layered Space-Time Architecture for Wireless Communication in a Fading Environment when Using Multiple Antennas," Bell Labs Technical Journal, Volume 1, Number 2 Autumn 1996, pp 41-59 (or: http://www.lucent.com/ideas2/perspectives/bltj/autumn_96/paper04/main.html. For more information on Claude Shannon's Information Theory, see http://www.lucent.com/informationtheory.

Lucent Technologies (LU) designs, builds, and delivers a wide range of public and private networks, communications systems and software, consumer and business telephone systems and microelectronics components. Bell Labs is the research and development arm of the company. For more information about Lucent Technologies, headquartered at Murray Hill, N.J., visit our website at http://www.lucent.com.


Story Source:

The above story is based on materials provided by Bell Labs - Lucent Technologies. Note: Materials may be edited for content and length.


Cite This Page:

Bell Labs - Lucent Technologies. "Bell Labs Scientists Shatter Limit On Fixed Wireless Transmission." ScienceDaily. ScienceDaily, 9 September 1998. <www.sciencedaily.com/releases/1998/09/980909000237.htm>.
Bell Labs - Lucent Technologies. (1998, September 9). Bell Labs Scientists Shatter Limit On Fixed Wireless Transmission. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/1998/09/980909000237.htm
Bell Labs - Lucent Technologies. "Bell Labs Scientists Shatter Limit On Fixed Wireless Transmission." ScienceDaily. www.sciencedaily.com/releases/1998/09/980909000237.htm (accessed July 25, 2014).

Share This




More Space & Time News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com
Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins