Featured Research

from universities, journals, and other organizations

'Duck!' -- Research Helps Give Hurlers More Time To React

Date:
February 4, 1999
Source:
Mississippi State University
Summary:
Mississippi State University is one of the places NCAA officials have turned to gather information about exit speeds, as well as reaction times and differences in the "sweet spots" between wood and non-wood bats. For more than a decade, MSU aerospace engineering professor Keith Koenig has collected baseball-related data. Using a 200 mph air cannon, computers and laser beams, he has been gauging the performance of baseball and softball bats.

STARKVILLE, Miss.--The three-inch white sphere blasts at the blink of an eye toward the pitcher just 60 feet away.

In college baseball, where balls hit off a typical metal bat can reach "exit" speeds of more than 100 miles per hour, the pitcher has only a split second--literally--to catch it or get out of the way.

According to the NCAA, as many as 20 college pitchers each season don't manage to do either, suffering batted-ball injuries significant enough to remove them from a game. A similar number of injuries is reported for infielders. The injury potential has become such an issue that the National Collegiate Athletic Association has begun to directly address the issue. The organization recently adopted diameter and weight/length difference specifications for bats to be used as early as this year's end-of-season championship games. Those requirements, plus new batted-ball exit speed standards, will be in effect permanently, beginning with the 1999-2000 regular season.

Mississippi State University is one of the places NCAA officials have turned to gather information about exit speeds, as well as reaction times and differences in the "sweet spots" between wood and non-wood bats.

For more than a decade, MSU aerospace engineering professor Keith Koenig has collected baseball-related data. Using a 200 mph air cannon, computers and laser beams, he has been gauging the performance of baseball and softball bats.

In one experiment, Koenig beams lasers onto home plate. "When the batter swings across the beams, we measure the time it takes the bat to cross a given beam or how long it takes to go from one beam to the next," he explains. "That gives us the swing speed, which helps determine the hit speed of a baseball or softball.

"With aluminum, graphite and other non-wood bats and better and stronger players, the ball speed leaving the bat is very high," he adds. "Infielders and the pitcher in particular have almost no time to react to the ball."

To clock the real-world swings of players, Koenig has taken his laser beam instrumentation to MSU's Dudy Noble Field, site of many NCAA championship games and a facility that in 1997 was named by Sports Illustrated magazine as "the best place to watch baseball" on an American college campus.

"At Dudy Noble, we can see better how players' swings are affected by changing properties such as the bat weight or the location of the balance point," Koenig said.

In this year's championship series, bats used in all three NCAA competitive divisions must not exceed a diameter of two and five-eighths inches. The difference between the length of the bat and its weight, not including the grip, cannot exceed three units. That means a 33-inch bat can't weigh less than 30 ounces.

"We've found a fairly noticeable difference in the swing speed for the heavier bats," Koenig observes. "Their use could make the game a lot safer for pitchers."

His studies also found swing speeds of around 65 miles-per-hour for 28- ounce bats and about 63 mph for those weighing 30 ounces.

"The reduction can improve reaction time to a hard-hit ball," Koenig says, adding that improvements "may not be significant" until batted ball speed standards go into effect.

The NCAA currently is testing a variety of bats on a specially designed batting machine located at the University of Massachusetts in Lowell. The goal is to drop the exit speed to no more than 93 mph.

Koenig says the new rules likely will be popular with pitchers, but heavy hitters may have some reason for concern. At Dudy Noble, for instance, a ball needs to be traveling at least 105 mph when it leaves the bat to clear the 20- foot center field fence 390 feet from home plate.

And where would a ball traveling at "just" 93 mph end up? "About 20 feet short," he calculates.


Story Source:

The above story is based on materials provided by Mississippi State University. Note: Materials may be edited for content and length.


Cite This Page:

Mississippi State University. "'Duck!' -- Research Helps Give Hurlers More Time To React." ScienceDaily. ScienceDaily, 4 February 1999. <www.sciencedaily.com/releases/1999/02/990204081249.htm>.
Mississippi State University. (1999, February 4). 'Duck!' -- Research Helps Give Hurlers More Time To React. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/1999/02/990204081249.htm
Mississippi State University. "'Duck!' -- Research Helps Give Hurlers More Time To React." ScienceDaily. www.sciencedaily.com/releases/1999/02/990204081249.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins