Featured Research

from universities, journals, and other organizations

Plate Tectonics May Have Once Operated On Mars, As Reported In Science

Date:
May 3, 1999
Source:
American Association For The Advancement Of Science
Summary:
Mars may once have maintained a plate tectonics system, according to a team of U.S. and French scientists who have analyzed new magnetic information about the planet's crust. The team reports its findings, which may be the first direct evidence that plate tectonics are not unique to Earth, in two papers in the 30 April issue of Science.

Washington DC - Mars may once have maintained a plate tectonics system, according to a team of U.S. and French scientists who have analyzed new magnetic information about the planet's crust. The team reports its findings, which may be the first direct evidence that plate tectonics are not unique to Earth, in two papers in the 30 April issue of Science.

Related Articles


"When the possibility of there once having been a plate tectonics system on Mars appeared in the data we were extremely excited. This interpretation has very interesting implications for our understanding of Mars and the other planets," said Henri Reme, of the Centre d'Ιtude Spatiale des Rayonnements at CNRS, in Toulouse, France, who is a member of the team.

Plate tectonics leave a distinctive magnetic signature in the Earth's crust, and it is this type of signature that scientists working with data from the Mars Global Surveyor spacecraft think they see in the oldest regions of crust on Mars. If confirmed, this would mean that many of the same forces that continue to form Earth's topography today may once have shaped Mars, before grinding to a halt.

When it emerged in the 1960s, the theory of plate tectonics revolutionized geologists' understanding of Earth just as the theory of natural selection illuminated evolution and the big bang theory transformed cosmology. Geologists began to agree that Earth's crust is divided into interlocking sections, or plates, that float atop the partially molten mantle. Heat from deep inside Earth's core drives a convection system within the surrounding mantle, causing the plates on the surface to shift like pieces of a restless jigsaw puzzle. As the plates separate, collide, and squeeze past each other, these motions form the basis for a unified explanation for a wide variety of geologic questions such as why earthquakes and volcanic eruptions occur, why and how mountain ranges form, and why ancient fossils and rocks from a seemingly common location have been found on disparate continents separated by miles of ocean.

What clinched the theory of plate tectonics on Earth was the presence on the Atlantic sea floor of a bar-code-like series of magnetic stripes. Scientists noticed that in each stripe, the crust's iron-bearing minerals aligned in the same direction, alternating between north and south. Intriguingly, these stripes formed symmetrical mirror images on either side of a ridge running down the center of the ocean basin. The now-standard explanation for this curious pattern is that the mid-ocean ridge is actually the site of sea-floor spreading, in which two tectonic plates diverge and allow magma to well up. As the magma cools to form new crust, its iron-bearing minerals magnetize and "freeze" in the direction of the prevailing magnetic field, which flip-flops north to south every 10,000 years or so. Such alternating, mirror-image magnetic stripes have become the definitive signature of plate tectonics on Earth.

The similarly patterned stripes on Mars are much more strongly magnetized than those on Earth, possibly because the martian crust is richer in iron. They are also much longer, some extending over 2,000 km in length, and about ten times wider, possibly because the spreading rate was much faster on Mars than on Earth, or because the magnetic field switched directions fewer times during the formation of new crust.

"We had no idea we'd see anything of this magnitude. It was mind blowing, really," said research team member Jack Connerney of NASA Goddard Space Flight Center in Maryland.

The researchers were also able to closely explore many other patches of magnetism elsewhere on Mars, in addition to the magnetic stripes that occur mostly in the southern hemisphere. They describe these features in a second paper in the same issue of Science.

Scientists have long been fascinated by the striking difference between Mars' two hemispheres. The northern hemisphere lies below Mars' mean surface level and is much younger than the elevated "highlands" of the southern hemisphere, which are heavily scarred with impact craters and wide channels. The team's findings suggest that the highlands might be remnants of early crust that was formed between two spreading plates. In some places the magnetic imprint may have been preserved, and in others it may have been demolished by later impacts and heating events such as volcanism.

The idea that these magnetic patterns are relics of plate tectonics on Mars is likely to be controversial, and in their paper Connerney and his colleagues consider several possible alternative explanations for their findings. For example, although it would be difficult to explain the alternating magnetic orientation of the stripes in this scenario, lava flows from volcanic eruptions can create a linear shape. When interpreting information from other planets, "we have to be careful not to stick rigidly to our terrestrial experiences," cautioned Connerney. "At least we can start the discussion here."

That the information was collected at all was the serendipitous consequence of an effort to use less rocket fuel. The Mars Global Surveyor spacecraft used a low-power technique known as aerobraking that took advantage of the drag exerted by Mars' atmosphere to slow the spacecraft down and reign in its orbit close to the planet. During the aerobraking process, the spacecraft made many passes around the planet and frequently dipped to low altitudes, allowing the magnetometer on board to take surprisingly extensive, detailed readings of the planet's surface. In addition, a problem with one of the solar panels on board forced the spacecraft to proceed with aerobraking more slowly than usual-allowing even more information to be collected.


Story Source:

The above story is based on materials provided by American Association For The Advancement Of Science. Note: Materials may be edited for content and length.


Cite This Page:

American Association For The Advancement Of Science. "Plate Tectonics May Have Once Operated On Mars, As Reported In Science." ScienceDaily. ScienceDaily, 3 May 1999. <www.sciencedaily.com/releases/1999/05/990503042215.htm>.
American Association For The Advancement Of Science. (1999, May 3). Plate Tectonics May Have Once Operated On Mars, As Reported In Science. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/1999/05/990503042215.htm
American Association For The Advancement Of Science. "Plate Tectonics May Have Once Operated On Mars, As Reported In Science." ScienceDaily. www.sciencedaily.com/releases/1999/05/990503042215.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Space & Time News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Spokesman: 'NORAD Ready to Track Santa'

Spokesman: 'NORAD Ready to Track Santa'

AP (Dec. 19, 2014) — Pentagon spokesman Rear Adm. John Kirby said that NORAD is ready to track Santa Claus as he delivers gifts next week. Speaking tongue-in-cheek, he said if Santa drops anything off his sleigh, "we've got destroyers out there to pick them up." (Dec. 19) Video provided by AP
Powered by NewsLook.com
NASA's Planet-Finding Kepler Mission Isn't Over After All

NASA's Planet-Finding Kepler Mission Isn't Over After All

Newsy (Dec. 18, 2014) — More than a year after NASA declared the Kepler spacecraft broken beyond repair, scientists have figured out how to continue getting useful data. Video provided by Newsy
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) — NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) — NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins