Featured Research

from universities, journals, and other organizations

MIT Researchers Help Create Best-Yet Map Of Mars' Terrain

Date:
May 31, 1999
Source:
Massachusetts Institute Of Technology
Summary:
Researchers have known for some time that Mars has a deep dent in its southern hemisphere. Until recent measurements yielded a highly accurate, global map of the red planet's topography, they didn't know that the Hellas basin could swallow Mt. Everest, or that the asteroid that caused the crater hurtled debris as far as 2,500 miles across the planet's surface.

CAMBRIDGE, Mass. -- Researchers have known for some time that Mars has a deep dent in its southern hemisphere. Until recent measurements yielded a highly accurate, global map of the red planet's topography, they didn't know that the Hellas basin could swallow Mt. Everest, or that the asteroid that caused the crater hurtled debris as far as 2,500 miles across the planet's surface.

"Probably the most unexpected finding was how much the Hellas impact basin dominates the topography of the southern hemisphere," said Maria Zuber, Griswold Professor of Planetary Sciences at the Massachusetts Institute of Technology. Another major finding is the planet's dramatic slope from its south to north pole. This would have significantly affected water transport and cycles on the planet, she said, leading to ponding of water in certain places.

Zuber and three other MIT researchers are part of a team of 20 scientists who created a global grid of Mars based on data from the Mars Orbiter Laser Altimeter (MOLA), an instrument on the Mars Global Surveyor spacecraft. Their work, published in today's (May 28) issue of the journal Science, is expected to lead to new insights about how Mars evolved over the past 4 billion years.

The map is expected to give scientists the basis for years' worth of further exploration and definition of the red planet. "The most significant aspect of the data is that it is going to allow us to reconstruct the evolution of the planet," Zuber said. "From the shape of the surface and information on gravity, magnetics and surface composition, we can model the internal structure and the planet's thermal evolution. These models bear closely on the history of climate and water.

"It is going to take some work, but the potential is there to construct and evaluate models of the planet as a global system. This is an extraordinary opportunity to study how the different parts of a planet influence and are affected by other parts," she said.

Dramatic shifts in terrain

Mars has the highest mountains and deepest craters of any of the terrestrial planets. There is a big contrast in elevation between the mostly flat northern hemisphere and the heavily cratered southern hemisphere, which sits on average three miles higher than the north. The topography of Mars has a 30-kilometer (19-mile) dynamic range, one and a half times that found on Earth, said David Smith of NASA's Goddard Space Flight Center, principal investigator for MOLA and lead author of the study.

Researchers from NASA's Goddard Space Flight Center, the Carnegie Institute of Washington (D.C.), Washington and Brown universities, the Jet Propulsion Laboratory and the California Institute of Technology, both in Pasadena, worked on the map. MIT researchers Gordon Pettengill, professor emeritus of Earth, Atmospheric and Planetary Sciences (EAPS); EAPS research scientist Gregory Neumann and EAPS graduate student Oded Aharonson are part of the team.

The high-resolution map represents 27 million measurements gathered during March and April this year and summer 1998. Each elevation point is known with an accuracy of about six feet in the flat northern hemisphere to 42 feet elsewhere. The level of detail is made possible by MOLA, which works by sending and receiving infrared laser pulses.

Zuber said that even though the researchers designed MOLA to be very accurate, they were nonetheless "rather startled at how well we have been able to measure the elevations. The topography of Mars is now known in a global sense better than many areas of Earth's continents. And we have not yet implemented the most advanced post-processing techniques, so the values are going to get better yet." MOLA continues to collect about 900,000 elevation measurements daily during the ongoing Mars Global Surveyor mission.

The data will be used, among other things, to assess where NASA's Mars Polar Lander mission will set down this winter.

A deep impact

"Before our map, it was known that Hellas was a big hole. But we believe that we have identified evidence that the material excavated from the basin was deposited in a mile-high ring that extends out to 2,500 miles from the center of the basin," Zuber said. "This material contributes significantly to the high elevation of the southern hemisphere and underscores the role of major impacts in shaping the early surfaces of the solid planets."

The volcanic Tharsis province includes the Olympus Mons volcanic shield, which shoots up nearly 17 miles. This area is in sharp contrast with the Hellas impact basin -- six miles deep and 1,400 miles across -- that was probably caused by an asteroid. The basin is surrounded by a ring of material that was ejected from it that would cover the United States with a 2-mile-deep layer.

The MOLA data suggest that the elliptical northern hemisphere depression was likely shaped by vigorous convection of the planet's mantle or tectonic plate recycling during the planet's formative stages.

The dramatic slope from Mars' south to north poles would have influenced the predominant way water flowed early in Martian history. The northern hemisphere's lowlands would have drained three-quarters of the Martian surface, but the map shows there are local areas, such as within the massive Valles Marineris canyon system, where Mars' limited water supply may have formed ponds, Zuber said.

MOLA was designed and built by the Laser Remote Sensing Branch of the Laboratory for Terrestrial Physics at Goddard. The Mars Global Surveyor mission is managed for NASA's Office of Space Science, Washington, DC, by the Jet Propulsion Laboratory (JPL), Pasadena, CA, a division of the California Institute of Technology. JPL's industrial partner is Lockheed Martin Astronautics, Denver, CO, which developed and operates the spacecraft.


Story Source:

The above story is based on materials provided by Massachusetts Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute Of Technology. "MIT Researchers Help Create Best-Yet Map Of Mars' Terrain." ScienceDaily. ScienceDaily, 31 May 1999. <www.sciencedaily.com/releases/1999/05/990531073203.htm>.
Massachusetts Institute Of Technology. (1999, May 31). MIT Researchers Help Create Best-Yet Map Of Mars' Terrain. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/1999/05/990531073203.htm
Massachusetts Institute Of Technology. "MIT Researchers Help Create Best-Yet Map Of Mars' Terrain." ScienceDaily. www.sciencedaily.com/releases/1999/05/990531073203.htm (accessed September 3, 2014).

Share This



More Space & Time News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: NASA Captures Solar Flare

Raw: NASA Captures Solar Flare

AP (Sep. 1, 2014) NASA reported the sun emitted a mid-level solar flare, on August 24th. NASA's Solar Dynamics Observatory captured the images of the flare, which erupted on the left side of the sun. (Sept. 1) Video provided by AP
Powered by NewsLook.com
Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins