Featured Research

from universities, journals, and other organizations

Mimicking Muscles Mechanically Promises To Change The Way That Robots Explore The Solar System

Date:
June 25, 1999
Source:
University Of Arizona
Summary:
A University of Arizona researcher hopes to send a device called a Biomorphic Robot with Distributed power (BiRoD) to Mars and other distant points in the solar system where they will probe, dig, photograph, analyze and generally explore the planets, moons and asteroids.

"We are trying to imitate biological systems," says Professor Kumar Ramohalli pointing to a 12-inch-long box supported by what look like legs at the front and legs on wheels at the back.

Related Articles


Ramohalli, of the aerospace and mechanical engineering (AME) department at The University of Arizona in Tucson, calls this device BiRoD -- Biomorphic Robot with Distributed power. He hopes to send BiRoDs (pronounced BYE RODS) to Mars and other distant points in the solar system where they will probe, dig, photograph, analyze and generally explore the planets, moons and asteroids.

"BiRoDs are much simpler than robots you have seen in the past," Ramohalli explains.

Look under BiRoD's hood and you'll see it doesn't have gears, servos and other complex mechanical systems. Instead, you find shiny, thin wires and springs known as muscle wires and muscle springs. Hook these wires or springs to a battery and they contract, mechanically mimicking the actions of muscles. They contract because the current flowing through muscle wires causes their molecules to rearrange themselves in a smaller space.

Muscle wires respond in milliseconds or less, can carry 17,000 times their weight and will go through millions of cycles without failing.

Using muscle wires to animate robots has many advantages, Ramohalli notes.

First, getting rid of all those gears, servos and other mechanical parts makes BiRoDs both lighter and much less complex. That means they are less likely to fail and more BiRoDs can be sent in the cargo hold of a spacecraft. For example, 25 BiRoDs would occupy the same space and payload weight that the single Sojourner robot needed on the Mars Pathfinder mission. With more robots, planetary scientists can gather more data, and if one of the robots breaks down, others can take its place.

BiRoDs also are more reliable because they are not as sensitive to dust and other enemies of mechanical systems. "We don't have to provide the kind of protection from the fine, powdery dust found on Mars that is needed by gears and servos," says AME junior Doug Steibich, one of the students who is working on the BiRoD project.

"To me, the most important thing is that power is distributed," Ramohalli adds. "Everything doesn't depend on central control. So if one leg stops working, everything doesn't jam up and freeze. BiRoD can limp along on the other legs."

Currently, the BiRoD prototype has two front legs and two unpowered rear wheels that roll along as the front legs propel it. Soon, however, Ramohalli's BiRoD team plans to replace the rear wheel/leg combination with two more powered legs. This will allow it to walk over obstacles, turn within its own body length, and complete many maneuvers that leave wheeled vehicles in the dust.

The prototype BiRoD also has infrared vision that enables it to avoid obstacles even in complete darkness.

BiRoDs will change the way scientists think about robotic capabilities and how they use them in the field. Unlike most robots, BiRoD can produce bursts of power -- again like a biological systems, less like machines. "You can store energy slowly and expend it suddenly," Ramohalli says. "Cats do this, for instance. They lie around much of the time, but then expend short bursts of energy to catch prey. They eat, store energy, and then are ready for another surge of power. Robots with this kind of capability can hop over an obstacle, turn over a rock or crush a mineral sample. These are things that today's robots can't do."

The BiRoD research is being conducted in the Space Engineering Research Center, which Ramohalli directs. The new technology concept for BiRoD has been filed with NASA. It is protected under a NASA Novel Technology Report.

Related link: http://scorpio.aml.arizona.edu/projects.html


Story Source:

The above story is based on materials provided by University Of Arizona. Note: Materials may be edited for content and length.


Cite This Page:

University Of Arizona. "Mimicking Muscles Mechanically Promises To Change The Way That Robots Explore The Solar System." ScienceDaily. ScienceDaily, 25 June 1999. <www.sciencedaily.com/releases/1999/06/990625075435.htm>.
University Of Arizona. (1999, June 25). Mimicking Muscles Mechanically Promises To Change The Way That Robots Explore The Solar System. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/1999/06/990625075435.htm
University Of Arizona. "Mimicking Muscles Mechanically Promises To Change The Way That Robots Explore The Solar System." ScienceDaily. www.sciencedaily.com/releases/1999/06/990625075435.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins